当前位置: 首页 > news >正文

机器学习实战4-数据预处理

文章目录

  • 数据无量纲化
    • preprocessing.MinMaxScaler(归一化)
      • 导库
      • 归一化
      • 另一种写法
      • 将归一化的结果逆转
    • preprocessing.StandardScaler(标准化)
      • 导库
      • 实例化
      • 查看属性
      • 查看结果
      • 逆标准化
  • 缺失值
    • impute.SimpleImputer
    • 另一种填充写法
  • 处理分类型特征:编码与哑变量
    • preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值
    • preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值
    • preprocessing.OneHotEncoder:独热编码,创建哑变量
  • 处理连续性特征:二值化与分段
    • sklearn.preprocessing.Binarizer
    • preprocessing.KBinsDiscretizer

数据无量纲化

2.png

preprocessing.MinMaxScaler(归一化)

3.png

导库

from sklearn.preprocessing import MinMaxScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

归一化

# 实现归一化
scaler = MinMaxScaler() #实例化
scaler = scaler.fit(data) #在这里本质是生成min(x), 和max(x)
result = scaler.transform(data) # 通过接口导出结果
result

另一种写法

scaler = MinMaxScaler() #实例化
result_ = scaler.fit_transform(data) # 训练和导出结果一步达成
result_

4.png
5.png

将归一化的结果逆转

scaler.inverse_transform(result) # 将归一化后的结果逆转

6.png
7.png
用numpy实现归一化

import numpy as np
X = np.array([[-1, 2], [-0.5, 6], [0, 10], [1, 18]])
# 归一化
X_nor = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_nor

8.png
逆转

X_returned = X_nor * (X.max(axis=0) - X.min(axis=0)) + X.min(axis=0)
X_returned

9.png

preprocessing.StandardScaler(标准化)

10.png

导库

from sklearn.preprocessing import StandardScaler
data = [[-1, 2], [-0.5, 6], [0, 10], [1, 18]]

实例化

scaler = StandardScaler() # 实例化
scaler.fit(data) # 本质是生成均值和方差

查看属性

scaler.mean_ #查看均值的属性mean_
scaler.var_ # 查看方差的属性var_

3.png

查看结果

x_std = scaler.fit_transform(data)
x_std

4.png

5.png

逆标准化

return_x = scaler.inverse_transform(x_std)
return_x

6.png
7.png

关于如何选择这两种无量纲化的方式要具体问题具体分析,但是我们一般在机器学习算法中选择标准化,这就好比我们能让他符合标准正态分布为什么不呢?而且MinMaxScaler对异常值很敏感,如果有一个很大的值会把其他值压缩到一个很小的区间内

8.png

缺失值

3.png

impute.SimpleImputer

4.png
导库

import pandas as pd
data = pd.read_csv(r"C:\Users\cxy\OneDrive\桌面\【机器学习】菜菜的sklearn课堂(1-12全课)\03数据预处理和特征工程\Narrativedata.csv",index_col=0 # 告诉python第0列是索引不是属性)
data.info()

提取出我们要填补的列

Age = data.loc[:, 'Age'].values.reshape(-1, 1) # reshape()能够将数据升维的方法

建模

from sklearn.impute import SimpleImputer
imp_mean = SimpleImputer() #实例化默认均值填补
imp_median = SimpleImputer(strategy='median') # 用中位数填补
imp_0 = SimpleImputer(strategy='constant', fill_value=0) # 用0填补
imp_mean = imp_mean.fit_transform(Age)
imp_median = imp_median.fit_transform(Age)
imp_0 = imp_0.fit_transform(Age)

8.png
9.png
用均值填补的结果
5.png
用中位数填补的结果
6.png
用0填补的结果
7.png
在实际中我们会直接把那两个缺失的数据直接删除

# 使用众数填补空缺值
Embarked = data.loc[:, 'Embarked'].values.reshape(-1, 1) # reshape()能够将数据升维的方法
imp_mode = SimpleImputer(strategy='most_frequent')
imp_mode = imp_mode.fit_transform(Embarked)
data.loc[:, "Embarked"] = imp_mode

另一种填充写法

导库

import pandas as pd
data_ = pd.read_csv(r"C:\Users\cxy\OneDrive\桌面\【机器学习】菜菜的sklearn课堂(1-12全课)\03数据预处理和特征工程\Narrativedata.csv",index_col=0 # 告诉python第0列是索引不是属性)
data_.head()

填补

data_.loc[:, 'Age'] = data_.loc[:, 'Age'].fillna(data_.loc[:, 'Age'].median()) # fillna()在DataFrame里面直接进行填补

3.png
删除缺失值

data_.dropna(axis=0, inplace=True)
#axis=0表示删除所有有缺失值的行。inplace表示覆盖原数据,即在原数据上进行修改,当inplace = False时,表示会产生一个复制的数据

4.png

处理分类型特征:编码与哑变量

5.png

preprocessing.LabelEncoder:标签专用,能够将分类转换为分类数值

from sklearn.preprocessing import LabelEncoder
y = data.iloc[:, -1] # 要输入的时标签不是特征矩阵,允许一维
le = LabelEncoder()
le = le.fit_transform(y)
data.iloc[:,-1] = label

preprocessing.OrdinalEncoder:特征专用,能够将分类特征转换为分类数值

from sklearn.preprocessing import OrdinalEncoder
data_ = data.copy()
OrdinalEncoder().fit(data.iloc[:, 1:-1]).categories_
data.iloc[:, 1:-1] = OrdinalEncoder().fit_transform(data.iloc[:, 1:-1])
data.head()

6.png

preprocessing.OneHotEncoder:独热编码,创建哑变量

7.png
8.png

from sklearn.preprocessing import OneHotEncoder
X = data.iloc[:1:-1]
result = OneHotEncoder(categories='auto').fit_transform(X).toarray() # 使用autopython会自己帮我们确定这个参数应该填什么
result

10.png
9.png
11.png
我们如何把我们新生成的哑变量放回去?
先将哑变量直接连在表的右边

newdata = pd.concat([data, pd.DataFrame(result)], axis=1)

12.png
将不需要的列删除

newdata.drop(["Sex", "Embarked"], axis=1, inplace=True)
newdata.columns = ["Age", "Survived", "Female", "Male", "Embarked_C", "Embarked_Q", "Embarked_S"]
newdata.head()

13.png
14.png
15.png
16.png

处理连续性特征:二值化与分段

sklearn.preprocessing.Binarizer

3.png

from sklearn.preprocessing import Binarizer
X = data_2.iloc[:,0].values.reshape(-1,1)
transformer = Binarizer(threshold=30).fit_transform(X)

preprocessing.KBinsDiscretizer

4.png

from sklearn.preprocessing import KBinsDiscretizer
X = data.iloc[:, 0].values.reshape(-1, 1)
est = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')
est.fit_transform(X)

相关文章:

机器学习实战4-数据预处理

文章目录 数据无量纲化preprocessing.MinMaxScaler(归一化)导库归一化另一种写法将归一化的结果逆转 preprocessing.StandardScaler(标准化)导库实例化查看属性查看结果逆标准化 缺失值impute.SimpleImputer另一种填充写法 处理分类型特征:编…...

项目管理师基础之项目管理计划和项目文件

项目管理过程中,会使用并产生两大类文件:项目管理计划和项目文件。内容一般如下: 整个项目生命周期需要收集、分析和转化大量的数据。从各个过程收集项目数据,并在项目团队内共享。在各个过程中所收集的数据经过结合相关背景的分…...

【单片机】DS2431,STM32,EEPROM读取与写入

芯片介绍: https://qq742971636.blog.csdn.net/article/details/132164189 接线 串口结果: 部分代码: #include "sys.h" #include "DS2431.h"unsigned char serialNb[8]; unsigned char write_data[128]; unsigned cha…...

c++11 标准模板(STL)(std::basic_stringbuf)(一)

定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allocator<CharT> > class basic_stringbuf : public std::basic_streambuf<CharT, Traits> std::basic_stringbuf…...

flutter开发实战-WidgetsBinding监听页面前台后台退出状态

flutter开发实战-WidgetsBinding监听页面前台后台退出状态 在开发过程中&#xff0c;经常监听页面前台后台退出状态&#xff0c;这里用到了WidgetsBinding 一、WidgetsBinding是什么&#xff1f; WidgetsBinding是Flutter中最重要的Binding之一&#xff0c;它提供了与Widget…...

父进程等待子进程退出 / 僵尸进程孤儿进程

Q&#xff1a;父进程为什么要等待子进程退出&#xff1f; A&#xff1a;回顾创建子进程的目的&#xff0c;就是让子进程去处理一些事情&#xff0c;那么“事情干完了没有”这件事&#xff0c;父进程需要知道并收集子进程的退出状态。子进程的退出状态如果不被收集&#xff0c;…...

【LeetCode 75】第二十六题(394)字符串解码

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码运行结果&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 给我们字符串&#xff0c;让我们解码&#xff0c;那么该怎么解码呢&#xff0c;被括号【】包裹起来的字符串需要扩展成括号左边第…...

UNIX网络编程——TCP协议API 基础demo服务器代码

目录 一.TCP客户端API 1.创建套接字 2.connect连接服务器​编辑 3.send发送信息 4.recv接受信息 5.close 二.TCP服务器API 1.socket创建tcp套接字(监听套接字) 2.bind给服务器套接字绑定port,ip地址信息 3.listen监听并创建连接队列 4.accept提取客户端的连接 5.send,r…...

[保研/考研机试] KY163 素数判定 哈尔滨工业大学复试上机题 C++实现

题目链接&#xff1a; 素数判定https://www.nowcoder.com/share/jump/437195121691718831561 描述 给定一个数n&#xff0c;要求判断其是否为素数&#xff08;0,1&#xff0c;负数都是非素数&#xff09;。 输入描述&#xff1a; 测试数据有多组&#xff0c;每组输入一个数…...

iOS_crash文件的获取及符号化(解析)

文章目录 1. 使用 symbolicatecrash 解析 .ips 文件&#xff1a;2. 使用 CrashSymbolicator.py 解析 ips 文件3. 使用 atos 解析 crash 文件4. Helps4.1 .ips 文件获取4.2 .crash 文件获取4.3 获取 .dSYM 和 .app 文件4.4 使用 dwarfdump 查询 uuid 5. Tips6. 总结 1. 使用 sym…...

STM32定时器TIM控制

一、CubeMX的设置 1、新建工程&#xff0c;进行基本配置 2、配置定时器TIM2 1&#xff09;定时器计算公式&#xff1a;&#xff08;以下两条公式相同&#xff09; Tout ((ARR1) * PSC1)) / Tclk TimeOut ((Prescaler 1) * (Period 1)) / TimeClockFren Tout TimeOut&…...

网络请求中,token和cookie有什么区别

HTTP无状态&#xff0c;每次请求都要携带cookie&#xff0c;以帮助识别用户身份&#xff1b; 服务端也可以向客户端set-cookie&#xff0c;cookie大小限制为4kb&#xff1b; cookie默认有跨域限制&#xff0c;不跨域共享和传递&#xff0c;例如&#xff1a; 现代浏览器开始禁…...

Javaweb_xml

文章目录 1.xml是什么&#xff1f;2.xml的用途 1.xml是什么&#xff1f; xml 是可扩展的标记性语言 2.xml的用途 1、用来保存数据&#xff0c;而且这些数据具有自我描述性 2、它还可以做为项目或者模块的配置文件 3、还可以做为网络传输数据的格式&#xff08;现在 JSON 为主…...

http相关知识点

文章目录 长链接http周边会话保持方案1方案2 基本工具postmanFiddlerFiddler的原理 长链接 一张网页实际上可能会有多种元素组成&#xff0c;这也就说明了网页需要多次的http请求。可由于http是基于TCP的&#xff0c;而TCP创建链接是有代价的&#xff0c;因此频繁的创建链接会…...

【SA8295P 源码分析】68 - Android 侧用户层 输入子系统获取 /dev/input/event0 节点数据 代码流程分析

【SA8295P 源码分析】68 - Android 侧用户层 输入子系统获取 /dev/input/event0 节点数据 代码流程分析 一、EventHub.cpp 监听 /dev/input/event0 节点流程二、EventHub.cpp 读取 /dev/input/event0 节点数据流程系列文章汇总见:《【SA8295P 源码分析】00 - 系列文章链接汇总…...

走出迷宫(多组输入bfs)

链接&#xff1a;登录—专业IT笔试面试备考平台_牛客网 来源&#xff1a;牛客网 题目描述 小明现在在玩一个游戏&#xff0c;游戏来到了教学关卡&#xff0c;迷宫是一个N*M的矩阵。 小明的起点在地图中用“S”来表示&#xff0c;终点用“E”来表示&#xff0c;障碍物用“#…...

Linux系统编程-终端、进程组、会话

一、终端的概念 在UNIX系统中&#xff0c;用户通过终端登录系统后得到一个Shell进程&#xff0c;这个终端成为Shell进程的控制终端&#xff08;Controlling Terminal&#xff09;&#xff0c;进程中&#xff0c;控制终端是保存在PCB中的信息&#xff0c;而fork会复制PCB中的信息…...

Linux部分文件操作记录

问题描述 多级文件夹下&#xff0c;有多个同名文件&#xff0c;以及其他无关文件&#xff0c;为了减轻体量&#xff0c;遍历目录&#xff0c;只保留对应文件 首先open terminal here find . -type f \( ! -name algo_imu.bin -a ! -name post_gnss_only_error.log -a ! -name…...

Android系统-进程-Binder2-Java层

引言&#xff1a; 对于Android系统&#xff0c;一般是从java层到native层&#xff0c;再到kernel驱动层&#xff0c;形成一个完整的软件架构。Android系统中的Binder IPC通信机制的整体架构&#xff0c;从java层到底层驱动层是怎么样的一个架构和原理的呢&#xff1f; 概念与…...

体渲染原理及WebGL实现【Volume Rendering】

体渲染&#xff08;Volume Rendering&#xff09;是NeRF神经场辐射AI模型的基础&#xff0c;与传统渲染使用三角形来显示 3D 图形不同&#xff0c;体渲染使用其他方法&#xff0c;例如体积光线投射 (Volume Ray Casting)。本文介绍体渲染的原理并提供Three.js实现代码&#xff…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

ES6从入门到精通:前言

ES6简介 ES6&#xff08;ECMAScript 2015&#xff09;是JavaScript语言的重大更新&#xff0c;引入了许多新特性&#xff0c;包括语法糖、新数据类型、模块化支持等&#xff0c;显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var&#xf…...

R语言AI模型部署方案:精准离线运行详解

R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

selenium学习实战【Python爬虫】

selenium学习实战【Python爬虫】 文章目录 selenium学习实战【Python爬虫】一、声明二、学习目标三、安装依赖3.1 安装selenium库3.2 安装浏览器驱动3.2.1 查看Edge版本3.2.2 驱动安装 四、代码讲解4.1 配置浏览器4.2 加载更多4.3 寻找内容4.4 完整代码 五、报告文件爬取5.1 提…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析&#xff08;97/126&#xff09;&#xff1a;邮件营销与用户参与度的关键指标优化指南 在数字化营销时代&#xff0c;邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天&#xff0c;我们将深入解析邮件打开率、网站可用性、页面参与时…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...