分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
目录
- 分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
- 效果一览
- 基本介绍
- 研究内容
- 程序设计
- 参考资料
效果一览





基本介绍
Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测(Matlab完整程序和数据)
1.最大互信息系数MIC(数据特征选择算法)的分类预测,MIC特征选择分类预测,多输入单输出模型。
2.多特征输入模型,直接替换数据就可以用。
3.语言为matlab。分类效果图,混淆矩阵图。
4.分类效果图,混淆矩阵图。
运行环境matlab2018及以上。
经过特征选择后,保留9个特征的序号为:
1 3 5 7 8 9 10 11 12
研究内容
最大互信息系数(Maximum Information Coefficient,MIC)是一种常用的数据特征选择算法,用于发现特征之间的非线性关系。它可以测量两个变量之间的最大相关性。首先,准备一个包含多个特征和目标变量的数据集。对于每对特征和目标变量,计算它们之间的互信息值。互信息度量了两个变量之间的相关性。将计算得到的互信息值进行排序,按照互信息值的大小进行降序排列。从排序后的互信息值列表中选择具有最大互信息系数的特征。可以根据具体需求选择一定数量的特征。最大互信息系数算法的核心思想是找到特征与目标变量之间的最大相关性,因此选择具有最大互信息系数的特征可以被认为是最相关的特征。这种选择方法可以帮助排除那些与目标变量关联较弱的特征,提高模型的性能和效率。在实际应用中,可以结合其他特征选择方法或降维技术来进一步优化特征选择过程。
程序设计
- 完整程序和数据下载方式(资源处直接下载):Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input );
t_train = T_train;
t_test = T_test ;%% 特征选择
k = 9; % 保留特征个数
[save_index, mic] = mic_select(p_train, t_train, k);%% 输出选择特征的对应序号
disp('经过特征选择后,保留9个特征的序号为:')
disp(save_index')%% 特征重要性
figure
bar(mic)
xlabel('输入特征序号')
ylabel('最大互信息系数')%% 特征选择后的数据集
p_train = p_train(save_index, :);
p_test = p_test (save_index, :);%% 输出编码
t_train = ind2vec(t_train);
t_test = ind2vec(t_test );%% 创建网络
net = newff(p_train, t_train, 5);%% 设置训练参数
net.trainParam.epochs = 1000; % 最大迭代次数
net.trainParam.goal = 1e-6; % 误差阈值
net.trainParam.lr = 0.01; % 学习率%% 训练网络
net = train(net, p_train, t_train);%% 数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
gridfigure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', 'MIC-BP预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
grid
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502
相关文章:
分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测
分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测 目录 分类预测 | Matlab实现基于MIC-BP最大互信息系数数据特征选择算法结合BP神经网络的数据分类预测效果一览基本介绍研究内容程序设计参考资料 效果一览 基本介绍 Matlab实现基于…...
拜读苏神-1-深度学习+文本情感分类
一、闲聊神经网络与深度学习 参考链接:https://www.kexue.fm/archives/3331 分类模型本质上是在做拟合——模型其实就是一个函数(或者一簇函数),里边有一些待定的参数,根据已有的数据,确定损失函数&#x…...
【uniapp 小程序开发语法篇】资源引入 | 语法介绍 | UTS 语法支持(链接格式)
博主:_LJaXi Or 東方幻想郷 专栏: uni-app | 小程序开发 开发工具:HBuilderX 小程序开发语法篇 引用组件easycom Js文件引入NPM支持 Css文件引入静态资源引入css 引入静态资源如何引入字体图标?css 引入字体图标示例nvue 引入字体…...
Stable Diffusion教程(9) - AI视频转动漫
配套抖音视频教程:https://v.douyin.com/UfTcrcJ/ 安装mov2mov插件 打开webui点击扩展->从网址安装输入地址,然后点击安装 https://github.com/Scholar01/sd-webui-mov2mov 最后重启webui 下载模型 从国内liblib AI 模型站下载模型 LiblibAI哩…...
378. 有序矩阵中第 K 小的元素
378. 有序矩阵中第 K 小的元素 原题链接:完成情况:解题思路:参考代码:__378有序矩阵中第K小的元素__直接排序__378有序矩阵中第K小的元素__归并排序__378有序矩阵中第K小的元素__二分查找 原题链接: 378. 有序矩阵中…...
商品首页(sass+git本地初始化)
目录 安装sass/sass-loader 首页(vue-setup) 使用git本地提交 同步远程git库 安装sass/sass-loader #安装sass npm i sass -D#安装sass-loader npm i sass-loader10.1.1 -D 首页(vue-setup) <template><view class"u-wrap"><!-- 轮播图 --><…...
Games101学习笔记 - MVP矩阵
MV矩阵(模型视图变换) 目的,把摄像机通过变换移动的世界坐标远点,并且朝向与Z轴的负方向相同。这个变换就是模型试图变换。 因为移动了相机,如果想保持正确的渲染的话,那么对应的物体需要要和相机保持相对…...
从零开始搭建个人博客网站(hexo框架)
1.工具及环境搭建 1)注册GitHub并且新建一个repositories 2)下载node.js以及Git 下载链接: 检验安装是否成功: 【注】:MacOS自带Git,可以直接在终端输入git --version进行检验 3)新建一个…...
vue的proxy代理详解
一、proxy常用参数说明 module.exports {publicPath: "/",devServer: {proxy: {"/api": {// 代理名称 凡是使用/api开头的地址都是用此代理target: "http://1.2.3.4:5000/", // 需要代理访问的api地址changeOrigin: true, // 允许跨域请求pa…...
计算机网络 ARP协议 IP地址简述
ARP只能在一个链路或一段网络上使用...
2021年03月 Python(一级)真题解析#中国电子学会#全国青少年软件编程等级考试
一、单选题(共25题,每题2分,共50分) 第1题 下列哪个操作不能退出IDLE环境? A:Alt+F4 B:Ctrl+Q C:按ESC键 D:exit() 正确的答案是:B:Ctrl+Q 解析:在IDLE环境中,Ctrl+Q组合键没有特定的功能,不会退出IDLE环境。要退出IDLE环境,可以使用exit()函数或者quit…...
机器学习实战4-数据预处理
文章目录 数据无量纲化preprocessing.MinMaxScaler(归一化)导库归一化另一种写法将归一化的结果逆转 preprocessing.StandardScaler(标准化)导库实例化查看属性查看结果逆标准化 缺失值impute.SimpleImputer另一种填充写法 处理分类型特征:编…...
项目管理师基础之项目管理计划和项目文件
项目管理过程中,会使用并产生两大类文件:项目管理计划和项目文件。内容一般如下: 整个项目生命周期需要收集、分析和转化大量的数据。从各个过程收集项目数据,并在项目团队内共享。在各个过程中所收集的数据经过结合相关背景的分…...
【单片机】DS2431,STM32,EEPROM读取与写入
芯片介绍: https://qq742971636.blog.csdn.net/article/details/132164189 接线 串口结果: 部分代码: #include "sys.h" #include "DS2431.h"unsigned char serialNb[8]; unsigned char write_data[128]; unsigned cha…...
c++11 标准模板(STL)(std::basic_stringbuf)(一)
定义于头文件 <sstream> template< class CharT, class Traits std::char_traits<CharT>, class Allocator std::allocator<CharT> > class basic_stringbuf : public std::basic_streambuf<CharT, Traits> std::basic_stringbuf…...
flutter开发实战-WidgetsBinding监听页面前台后台退出状态
flutter开发实战-WidgetsBinding监听页面前台后台退出状态 在开发过程中,经常监听页面前台后台退出状态,这里用到了WidgetsBinding 一、WidgetsBinding是什么? WidgetsBinding是Flutter中最重要的Binding之一,它提供了与Widget…...
父进程等待子进程退出 / 僵尸进程孤儿进程
Q:父进程为什么要等待子进程退出? A:回顾创建子进程的目的,就是让子进程去处理一些事情,那么“事情干完了没有”这件事,父进程需要知道并收集子进程的退出状态。子进程的退出状态如果不被收集,…...
【LeetCode 75】第二十六题(394)字符串解码
目录 题目: 示例: 分析: 代码运行结果: 题目: 示例: 分析: 给我们字符串,让我们解码,那么该怎么解码呢,被括号【】包裹起来的字符串需要扩展成括号左边第…...
UNIX网络编程——TCP协议API 基础demo服务器代码
目录 一.TCP客户端API 1.创建套接字 2.connect连接服务器编辑 3.send发送信息 4.recv接受信息 5.close 二.TCP服务器API 1.socket创建tcp套接字(监听套接字) 2.bind给服务器套接字绑定port,ip地址信息 3.listen监听并创建连接队列 4.accept提取客户端的连接 5.send,r…...
[保研/考研机试] KY163 素数判定 哈尔滨工业大学复试上机题 C++实现
题目链接: 素数判定https://www.nowcoder.com/share/jump/437195121691718831561 描述 给定一个数n,要求判断其是否为素数(0,1,负数都是非素数)。 输入描述: 测试数据有多组,每组输入一个数…...
网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)
LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...
LangFlow技术架构分析
🔧 LangFlow 的可视化技术栈 前端节点编辑器 底层框架:基于 (一个现代化的 React 节点绘图库) 功能: 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...
