当前位置: 首页 > news >正文

分布式搜索ElasticSearch-ES(一)

一、ElasticSearch介绍

ES是一款非常强大的开源搜索引擎,可以帮我们从海量的数据中快速找到我们需要的内容。

ElasticSearch结合kibana、Logstash、Beats,也就是elastic stack(ELK),被广泛运用在日志数据分析,实时监控等领域。

ES负责数据 存储、计算、搜索数据

LogStash和Beats负责 数据抓取

Kibana 是数据可视化组件

Lucence是ES的底层开发,java语言搜索引擎类库,是Apache公司顶级项目。

Lucence优势:

  1. 易扩展。
  2. 高性能。(基于倒排索引)

缺点:

  1. 只限于java语言开发。
  2. 学习难度高,曲线陡峭。
  3. 不支持水平扩展。

于是在lucence的基础上,ES优点:

  1. 支持分布式,可水平扩展。
  2. 提供restful接口,被任何语言调用。

什么是ElasticSearch?

一个开源的分布式搜索引擎,可以实现日志搜索,日志统计,分析等。

什么是ElasticSearch Stack(ELK)?

是以es为核心,logStash和beats负责数据抓取,kibana数据可视化的技术栈。

二、索引

传统数据库采用 正向索引,而es采用 倒排索引。

如mysql采用正向索引,比如一个表里有id,这个自增id就属于主键索引,也属于正向索引,查询非常快。

但如果查询某个字段,这个字段叫title其中存储着“明朝那些事”,这时候如果想查包含“那些”的title怎么查询呢,即使title有索引,这时候用模糊查询也会索引失效。

 

ElasticSearch采用倒排索引,倒排索引有两个概念,文档和词条。

  1. 文档(document):每条数据就是一个文档。
  2. 词条(term):文档按照语义分成的词语。

词条的唯一性保证不会重复,对词条创建索引

查询“华为手机”的过程

  1. 先拆分这个搜索为词条“华为”“手机”。
  2. 在倒排索引通过词条创建的主键索引,快速找到“手机”对应id为1,2,“华为”对应id为2,3。
  3. 文档id1,2,3可以查询到对应的三条数据,通过聚簇索引快速查询到结果集。

为什么叫倒排索引呢,因为平时数据库我们是先通过id去找具体的值,而es的倒排索引我们通过次创建新的索引,所以先是去找值再找对应索引的具体值。

三、ES与mysql对比

文档:

ElasticSearch是面向文档存储,可以是数据库一条商品或者一个订单信息。会被序列化成JSON格式存储。

索引(index):

会把类型相同的索引放在一起,比如商品索引,用户索引,订单索引等。

  1. Mysql的table 对比与 es的索引index

索引就是文档的集合,类似与数据库的表。

  1. mysql的row对比与es的document

Document是json风格,row是一条条数据。

Mysql擅长事务,数据库一致性和安全。

Es擅长海量数据搜索和计算。

相关文章:

分布式搜索ElasticSearch-ES(一)

一、ElasticSearch介绍 ES是一款非常强大的开源搜索引擎,可以帮我们从海量的数据中快速找到我们需要的内容。 ElasticSearch结合kibana、Logstash、Beats,也就是elastic stack(ELK),被广泛运用在日志数据分析,实时监控等领域。 …...

react学习笔记——3. jsx语法规则

jsx是什么? jsx全称:javaScript XML是react定义的一种类似于XML的js扩展语法,是jsxml。 xml早期用于存储和传输数据,是标签加数据的形式。只不过后来慢慢的变成了json 其本质就是React.createElement(标签,属性,内容)方法的语法糖…...

MySQL分表实现上百万上千万记录分布存储的批量查询设计模式

我们知道可以将一个海量记录的 MySQL 大表根据主键、时间字段,条件字段等分成若干个表甚至保存在若干服务器中。唯一的问题就是跨服务器批量查询麻烦,只能通过应用程序来解决。谈谈在Java中的解决思路。其他语言原理类似。这里说的分表不是 MySQL 5.1 的…...

射频入门知识-1

信号源 示波器 综合测试仪 功率计 噪声测试仪 频谱分析仪 频谱分析仪: 放大器的噪声系数测试 放大器增益测试 噪声和增益是放大器的最关键指标,学学怎么用频谱仪做放大器的噪声测试 那个 hbf740 输入和输出阻抗匹配具体怎么搞 《ADS2011射频电路设计与…...

基于注解函数式编程实现组件解耦设计

随着业务系统的不断发展,系统架构变得越来越复杂,多种业务交叉写在一起,不仅带来了维护层面的困难,而且新人也很难以入手修改代码,业界通常采用组件模块化开发模式,用于降低系统的复杂度,本文主要针对组件化具体实施过程中,组件层面的方法解耦进行了详细讲解。 1前言 …...

并查集、树状数组

并查集、树状数组、线段树 并查集树状数组树状数组1 (单点修改,区间查询)树状数组2 (单点查询,区间修改) 并查集 【模板】并查集 题目描述 如题,现在有一个并查集,你需要完成合并和查询操作。 输入格式 第一行包含两个整数 …...

ES6中Null判断运算符(??)正确打开方式-

读取对象属性的时候,如果某个属性的值是null或者undefined,有时候需要为它们指定默认值。常见的作法是通过||运算符指定默认值。 const headerText response.settings.headerText || Hello, world!; const animationDuration response.settings.anima…...

java的内存模型

Java内存基础 并发编程模型的两个关键问题 线程之间如何通信及线程之间如何同步 线程之间的通信机制有两种:共享内存和消息传递。 在共享内存的并发模型里,线程之间共享程序的公共状态,通过写-读内存中的公共状态 进行隐式通信。在消息传…...

基于 CentOS 7 构建 LVS-DR 群集 配置nginx负载均衡

环境配置: RHCE客户机192.168.100.146node1lvs192.168.100.145node2RS192.168.100.147node3RS192.168.100.148 配置ipvsadm httpd: [rootnode1 ~]# yum install ipvsadm.x86_64 [rootnode2 ~]# yum install http -y [rootnode2 ~]# systemctl …...

CSS练习

CSS练习 工具代码运行结果 工具 HBuilder X 代码 <!DOCTYPE html> <!-- 做一个表格&#xff0c;6行4列实现隔行换色&#xff08;背景色&#xff09;并且第3列文字红色第一个单元格文字大小30px。最后一个单元格文字加粗--> <html><head><meta ch…...

基于深度学习的3D城市模型增强【Mask R-CNN】

在这篇文章中&#xff0c;我们描述了一个为阿姆斯特丹 3D 城市模型自动添加门窗的系统&#xff08;可以在这里访问&#xff09;。 计算机视觉用于从城市全景图像中提取有关门窗位置的信息。 由于这种类型的街道级图像广泛可用&#xff0c;因此该方法可用于较大的地理区域。 推荐…...

LabVIEW对并行机器人结构进行建模仿真

LabVIEW对并行机器人结构进行建模仿真 为了对复杂机器人结构的数学模型进行建模、搜索、动画和验证&#xff0c;在工业机器人动态行为实验室中&#xff0c;设计并实现了具有五个自由度的单臂型机器人。在研究台上可以区分以下元素&#xff1a;带有直流电机和编码器的机器人;稳…...

【算法题】1281. 整数的各位积和之差

题目&#xff1a; 给你一个整数 n&#xff0c;请你帮忙计算并返回该整数「各位数字之积」与「各位数字之和」的差。 示例 1&#xff1a; 输入&#xff1a;n 234 输出&#xff1a;15 解释&#xff1a; 各位数之积 2 * 3 * 4 24 各位数之和 2 3 4 9 结果 24 - 9 15 示…...

(一)ES6 介绍

为什么学习ES6 ES6的版本变动内容最多&#xff0c;具有里程碑意义ES加入许多新的语法特性&#xff0c;编程实现更简单、搞笑ES6是前端发展趋势&#xff0c;就业必备技能 什么是ECMA ECMA&#xff08;European Computer Manufacturers Association&#xff09;&#xff0c;中…...

窥孔优化(Peephole Optimization)

窥孔优化&#xff08;Peephole Optimization&#xff09;是编译器中的一个技术&#xff0c;用于优化生成的中间代码或目标代码。该优化方法通过查看代码的小部分&#xff08;或称为“窥孔”&#xff09;来识别并提供更高效的代码替代方案。 1. 基本概念 定义&#xff1a;窥孔优…...

Docker安装ElasticSearch/ES 7.4.0

目录 前言安装ElasticSearch/ES安装步骤1&#xff1a;准备1. 安装docker2. 搜索可以使用的镜像。3. 也可从docker hub上搜索镜像。4. 选择合适的redis镜像。 安装步骤2&#xff1a;拉取ElasticSearch镜像1 拉取镜像2 查看已拉取的镜像 安装步骤3&#xff1a;创建容器创建容器方…...

无涯教程-Perl - readline函数

描述 此函数从EXPR引用的文件句柄中读取一行,并返回输出。如果要直接使用FILEHANDLE,则必须将其作为typeglob传递。 Simply readline function is equvivalent to <>. 语法 以下是此函数的简单语法- readline EXPR返回值 此函数在标量context中仅返回一行,而在列表…...

类与对象(入门)

目录 1.前言 2.类的引入 3.类的定义 4.类的访问限定符及封装 4.1 访问限定符 4.2 封装 5.类的作用域 6.类的实例化 7. 结构体内存对齐规则 8.this指针 8.1 this指针的引出 8.2 this指针的特性 1.前言 C 是 基于面向对象 的&#xff0c; 关注 的是 对象 &#xff0c;…...

刷题记录(2023-08-12)

1. 小美的排列询问 AC代码&#xff1a; #include <iostream> #include <vector> using namespace std;int main() {int n;cin >> n;vector<int> nums(n);int a, b;for (int i 0; i < n; i) {cin >> nums[i];}cin >> a >> b;for…...

GPT内功心法:搜索思维到GPT思维的转换

大家好,我是herosunly。985院校硕士毕业,现担任算法研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

生成 Git SSH 证书

&#x1f511; 1. ​​生成 SSH 密钥对​​ 在终端&#xff08;Windows 使用 Git Bash&#xff0c;Mac/Linux 使用 Terminal&#xff09;执行命令&#xff1a; ssh-keygen -t rsa -b 4096 -C "your_emailexample.com" ​​参数说明​​&#xff1a; -t rsa&#x…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

使用SSE解决获取状态不一致问题

使用SSE解决获取状态不一致问题 1. 问题描述2. SSE介绍2.1 SSE 的工作原理2.2 SSE 的事件格式规范2.3 SSE与其他技术对比2.4 SSE 的优缺点 3. 实战代码 1. 问题描述 目前做的一个功能是上传多个文件&#xff0c;这个上传文件是整体功能的一部分&#xff0c;文件在上传的过程中…...

【WebSocket】SpringBoot项目中使用WebSocket

1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖&#xff0c;添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...

用递归算法解锁「子集」问题 —— LeetCode 78题解析

文章目录 一、题目介绍二、递归思路详解&#xff1a;从决策树开始理解三、解法一&#xff1a;二叉决策树 DFS四、解法二&#xff1a;组合式回溯写法&#xff08;推荐&#xff09;五、解法对比 递归算法是编程中一种非常强大且常见的思想&#xff0c;它能够优雅地解决很多复杂的…...