当前位置: 首页 > news >正文

opencv基础49-图像轮廓02-矩特征cv2.moments()->(形状分析、物体检测、图像识别、匹配)

矩特征(Moments Features)是用于图像分析和模式识别的一种特征表示方法,用来描述图像的形状、几何特征和统计信息。矩特征可以用于识别图像中的对象、检测形状以及进行图像分类等任务。

矩特征通过计算图像像素的高阶矩来提取特征。这些矩可以表示图像的中心、尺度、旋转和形状等属性。以下是一些常见的图像矩特征:

  1. 零阶矩(Zeroth-Order Moments):描述图像的总体亮度或面积,通常表示为图像的像素数。

  2. 一阶矩(First-Order Moments):描述图像的质心、平均位置和分布。它们用于计算图像的中心位置。

  3. 中心矩(Central Moments):描述图像区域相对于质心的分布。中心矩能够捕获图像的旋转和平移特性。

  4. 标准化矩(Normalized Moments):将矩标准化以获得尺度和旋转不变性。标准化矩可以用于匹配和识别。

  5. **Hu不变矩(Hu Moments):**基于七个基本矩构建,具有旋转、平移和尺度不变性。Hu不变矩用于图像匹配和模式识别。

什么是图像的质心?

图像的质心(Centroid)是一个表示图像几何中心的概念。在二维平面上,图像的质心是指图像中所有像素的平均位置,即图像的重心或几何中心。

对于二值图像(黑白图像),质心可以通过以下方式计算:

将图像中的每个像素视为一个点,其坐标为 (x, y)。 对于每个像素点,计算其 x 坐标的总和和 y 坐标的总和。
用总和除以图像中像素的总数,得到 x 和 y 坐标的平均值,即为质心的坐标。
质心的坐标表示图像在水平和垂直方向上的平均位置。在实际应用中,质心通常被用于描述图像的位置信息,例如目标的位置、形状的中心等。对于多通道彩色图像,可以分别计算每个通道的质心。

矩特征应用场景

矩特征在图像处理和模式识别领域有许多应用场景,可以用于描述图像的形状、几何属性和分布情况。以下是一些常见的矩特征应用场景:

  1. 物体识别和分类:矩特征可以用于提取图像中物体的形状和几何特征,从而进行物体的识别和分类。通过比较矩特征,可以判断物体是否属于某个类别。

  2. 目标检测:在计算机视觉中,目标检测是指在图像中找到特定物体的位置。矩特征可以用于检测物体的形状和轮廓,从而帮助确定物体的位置。

  3. 图像匹配:矩特征可以用于图像的匹配和对准,通过比较两幅图像的矩特征,可以找到它们之间的相似性和变换关系。

  4. 图像压缩和编码:矩特征可以用于图像的压缩和编码,通过提取图像的主要几何信息,可以减少图像数据的存储空间。

  5. 图像分割:图像分割是将图像分成不同的区域,矩特征可以用于描述不同区域的形状和几何属性,从而帮助分割图像。

  6. 医学图像分析:在医学领域,矩特征可以用于分析医学图像中的组织、器官和病变,从而提取形状和几何特征。

  7. 指纹识别:矩特征可以用于指纹识别,通过提取指纹图像的几何特征,实现指纹的识别和比对。

  8. 遥感图像分析:在遥感图像中,矩特征可以用于提取地物的形状和分布,从而实现土地利用、环境监测等应用。

矩的计算:moments函数

OpenCV 提供了函数 cv2.moments()来获取图像的 moments 特征。通常情况下,我们将使用函数 cv2.moments()获取的轮廓特征称为“轮廓矩”。轮廓矩描述了一个轮廓的重要特征,使用轮廓矩可以方便地比较两个轮廓。

函数 cv2.moments()的语法格式为:

retval = cv2.moments( array[, binaryImage] )

  • array:可以是点集,也可以是灰度图像或者二值图像。当 array 是点集时,函数会把这些点集当成轮廓中的顶点,把整个点集作为一条轮廓,而不是把它们当成独立的点来看待。
  • binaryImage:该参数为 True 时,array 内所有的非零值都被处理为 1。该参数仅在参数array 为图像时有效。

该函数的返回值 retval 是矩特征,主要包括:

(1)空间矩

  • 零阶矩:m00
  • 一阶矩:m10, m01
  • 二阶矩:m20, m11, m02
  • 三阶矩:m30, m21, m12, m03
    (2)中心矩
  • 二阶中心矩:mu20, mu11, mu02
  • 三阶中心矩:mu30, mu21, mu12, mu03
    (3)归一化中心矩
  • 二阶 Hu 矩:nu20, nu11, nu02
  • 三阶 Hu 矩:nu30, nu21, nu12, nu03

上述矩都是根据公式计算得到的,大多数矩比较抽象。但是很明显,如果两个轮廓的矩一致,那么这两个轮廓就是一致的。虽然大多数矩都是通过数学公式计算得到的抽象特征,但是
零阶矩“m00”的含义比较直观,它表示一个轮廓的面积。

矩特征函数 cv2.moments()所返回的特征值,能够用来比较两个轮廓是否相似。例如,有两个轮廓,不管它们出现在图像的哪个位置,我们都可以通过函数 cv2.moments()的 m00 矩判断其面积是否一致。

在位置发生变化时,虽然轮廓的面积、周长等特征不变,但是更高阶的特征会随着位置的变化而发生变化。在很多情况下,我们希望比较不同位置的两个对象的一致性。解决这一问题的方法是引入中心矩。中心矩通过减去均值而获取平移不变性,因而能够比较不同位置的两个对象是否一致。很明显,中心矩具有的平移不变性,使它能够忽略两个对象的位置关系,帮助我们比较不同位置上两个对象的一致性。

除了考虑平移不变性外,我们还会考虑经过缩放后大小不一致的对象的一致性。也就是说,我们希望图像在缩放前后能够拥有一个稳定的特征值。也就是说,让图像在缩放前后具有同样的特征值。显然,中心矩不具有这个属性。例如,两个形状一致、大小不一的对象,其中心矩是有差异的。

归一化中心矩通过除以物体总尺寸而获得缩放不变性。它通过上述计算提取对象的归一化中心矩属性值,该属性值不仅具有平移不变性,还具有缩放不变性。

在 OpenCV 中,函数 cv2.moments()会同时计算上述空间矩、中心矩和归一化中心距。

示例:使用函数 cv2.moments()提取一幅图像的特征。

代码如下:


import cv2
import numpy as np
o = cv2.imread('moments.bmp')
cv2.imshow("original",o)
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
n=len(contours)
contoursImg=[]
for i in range(n):temp=np.zeros(o.shape,np.uint8)contoursImg.append(temp)contoursImg[i]=cv2.drawContours(contoursImg[i],contours,i,255,3)cv2.imshow("contours[" + str(i)+"]",contoursImg[i])
print("观察各个轮廓的矩(moments):")
for i in range(n):print("轮廓"+str(i)+"的矩:\n",cv2.moments(contours[i]))
print("观察各个轮廓的面积:")
for i in range(n):print("轮廓"+str(i)+"的面积:%d" %cv2.moments(contours[i])['m00'])
cv2.waitKey()
cv2.destroyAllWindows()

本例中,首先使用函数 cv2.moments()提取各个轮廓的特征;接下来,通过语句
cv2.moments(contours[i])[‘m00’])提取各个轮廓矩的面积信息。

运行结果如下:

观察各个轮廓的矩(moments):
轮廓0的矩:{'m00': 14900.0, 'm10': 1996600.0, 'm01': 7800150.0, 'm20': 279961066.6666666, 'm11': 1045220100.0, 'm02': 4110944766.6666665, 'm30': 40842449600.0, 'm21': 146559618400.0, 'm12': 550866598733.3334, 'm03': 2180941440375.0, 'mu20': 12416666.666666627, 'mu11': 0.0, 'mu02': 27566241.666666508, 'mu30': 1.52587890625e-05, 'mu21': 2.09808349609375e-05, 'mu12': 6.198883056640625e-05, 'mu03': 0.000244140625, 'nu20': 0.05592841163310942, 'nu11': 0.0, 'nu02': 0.12416666666666591, 'nu30': 5.630596400372416e-16, 'nu21': 7.742070050512072e-16, 'nu12': 2.2874297876512943e-15, 'nu03': 9.008954240595866e-15}
轮廓1的矩:{'m00': 34314.0, 'm10': 13313832.0, 'm01': 9728019.0, 'm20': 5356106574.0, 'm11': 3774471372.0, 'm02': 2808475082.0, 'm30': 2225873002920.0, 'm21': 1518456213729.0, 'm12': 1089688331816.0, 'm03': 824882507095.5, 'mu20': 190339758.0, 'mu11': 0.0, 'mu02': 50581695.5, 'mu30': 0.0, 'mu21': 0.0, 'mu12': 0.0, 'mu03': 0.0, 'nu20': 0.16165413533834588, 'nu11': 0.0, 'nu02': 0.042958656330749356, 'nu30': 0.0, 'nu21': 0.0, 'nu12': 0.0, 'nu03': 0.0}
轮廓2的矩:{'m00': 3900.0, 'm10': 2696850.0, 'm01': 273000.0, 'm20': 1866699900.0, 'm11': 188779500.0, 'm02': 19988800.0, 'm30': 1293351277725.0, 'm21': 130668993000.0, 'm12': 13822255200.0, 'm03': 1522248000.0, 'mu20': 1828125.0, 'mu11': 0.0, 'mu02': 878800.0, 'mu30': 0.0, 'mu21': 0.0, 'mu12': 0.0, 'mu03': 0.0, 'nu20': 0.1201923076923077, 'nu11': 0.0, 'nu02': 0.05777777777777778, 'nu30': 0.0, 'nu21': 0.0, 'nu12': 0.0, 'nu03': 0.0}
观察各个轮廓的面积:
轮廓0的面积:14900
轮廓1的面积:34314
轮廓2的面积:3900

在这里插入图片描述

计算轮廓的面积:contourArea函数

opencv 中也有单独计算轮廓面积的函数 contourArea函数

函数 cv2.contourArea()用于计算轮廓的面积。该函数的语法格式为:

retval =cv2.contourArea(contour [, oriented] ))

式中的返回值 retval 是面积值。

式中有两个参数:

  • contour 是轮廓。
  • oriented 是布尔型值。当它为 True 时,返回的值包含正/负号,用来表示轮廓是顺时针还是逆时针的。该参数的默认值是 False,表示返回的 retval 是一个绝对值。

代码示例:使用函数 cv2.contourArea()计算各个轮廓的面积。


import cv2
import numpy as np
o = cv2.imread('moments.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("original",o)
n=len(contours)
contoursImg=[]
for i in range(n):print("moments["+str(i)+"]面积=",cv2.contourArea(contours[i]))temp=np.zeros(o.shape,np.uint8)contoursImg.append(temp)contoursImg[i]=cv2.drawContours(contoursImg[i],contours,i,(255,255,255),3)cv2.imshow("moments[" + str(i)+"]",contoursImg[i])
cv2.waitKey()
cv2.destroyAllWindows()

运行结果:

moments[0]面积= 14900.0
moments[1]面积= 34314.0
moments[2]面积= 3900.0

可以看到跟上面m00 拿到的是一样的,图显也一样
在这里插入图片描述

代码示例:在上面的基础上,将面积大于 15 000 的轮廓筛选出来。

代码如下:

import cv2
import numpy as np
o = cv2.imread('moments.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("original",o)
n=len(contours)
contoursImg=[]
for i in range(n):temp=np.zeros(o.shape,np.uint8)contoursImg.append(temp)contoursImg[i]=cv2.drawContours(contoursImg[i],contours,i,(255,255,255),3)if cv2.contourArea(contours[i]) > 15000:print("moments[" + str(i) + "]面积=", cv2.contourArea(contours[i]))cv2.imshow("moments[" + str(i)+"]",contoursImg[i])
cv2.waitKey()
cv2.destroyAllWindows()

通过语句“if cv2.contourArea(contours[i])>15000:”实现对面积值的筛选,然后对面积值大于 15 000 的轮廓使用语句“cv2.imshow(“contours[” + str(i)+“]”,contoursImg[i])”显示出来。

运行结果:

moments[1]面积= 34314.0

在这里插入图片描述

计算轮廓的长度(周长):arcLength函数

函数 cv2.arcLength()用于计算轮廓的长度,其语法格式为:

retval = cv2.arcLength( curve, closed )

式中返回值 retval 是轮廓的长度(周长)。

上式中有两个参数:

  • curve 是轮廓。
  • closed 是布尔型值,用来表示轮廓是否是封闭的。该值为 True 时,表示轮廓是封闭的

示例:将一幅图像内长度大于平均值的轮廓显示出来。

import cv2
import numpy as np
#--------------读取及显示原始图像--------------------
o = cv2.imread('moments.bmp')#--------------获取轮廓--------------------
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
#--------------计算各轮廓的长度之和、平均长度--------------------
n=len(contours) # 获取轮廓的个数
cntLen=[] # 存储各轮廓的长度
for i in range(n):cntLen.append(cv2.arcLength(contours[i],True))print("第"+str(i)+"个轮廓的长度:%d"%cntLen[i])
cntLenSum=np.sum(cntLen) # 各轮廓的长度之和
cntLenAvr=cntLenSum/n # 轮廓长度的平均值
print("轮廓的总长度为:%d"%cntLenSum)
print("轮廓的平均长度为:%d"%cntLenAvr)

运行结果:

第0个轮廓的长度:498
第1个轮廓的长度:782
第2个轮廓的长度:254
轮廓的总长度为:1534
轮廓的平均长度为:511

代码示例原图

在这里插入图片描述

相关文章:

opencv基础49-图像轮廓02-矩特征cv2.moments()->(形状分析、物体检测、图像识别、匹配)

矩特征(Moments Features)是用于图像分析和模式识别的一种特征表示方法,用来描述图像的形状、几何特征和统计信息。矩特征可以用于识别图像中的对象、检测形状以及进行图像分类等任务。 矩特征通过计算图像像素的高阶矩来提取特征。这些矩可以…...

什么是CSS Grid布局?什么是Flexbox布局?它们两者有什么不同?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ CSS Grid布局⭐ Flexbox布局⭐ 不同之处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个专栏是为那些对Web…...

Centos中pip install mysqlclient失败

pip install mysqlclient 错误详情如下 pip install mysqlclient Looking in indexes: http://mirrors.tencentyun.com/pypi/simple Collecting mysqlclient Using cached http://mirrors.tencentyun.com/pypi/packages/de/9c/b176826e8994551ce826404dab97e305a4bb76c8b0a4e0…...

arcgis更改图层字段名脚本

话不多说,上脚本源码,复制黏贴即可 #-*- coding:utf-8 -*- __author__ lumen import arcpy #输入图层 InputFeature arcpy.GetParameterAsText(0) #原始字段 oldField arcpy.GetParameterAsText(1) # 获取原始字段类型 oldFieldType desc arcpy.…...

Android 13 MTK平台添加自定义按键,以及CTS问题解决

添加自定义按键流程 一般来说上层添加以下几处修改 驱动层的键值上报,让驱动处理好即可 frameworks / base/core/java/android/view/KeyEvent.java public static final int KEYCODE_DEMO_APP_4 = 304;/** add by songhui for fingerprint Key code */+ public static fina…...

深入了解 Postman Test 校验的使用方法

Postman 是一个广泛使用的 API 开发工具,它允许开发人员测试 API 的各个方面,包括请求、响应、身份验证等等,其中最常用的功能之一就是 Test 校验。那今天就一起来看看 Postman 的 Test 校验该如何使用。 Test 校验是什么? Test…...

岛屿的最大面积(力扣)递归 JAVA

给你一个大小为 m x n 的二进制矩阵 grid 。 岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。 岛屿的面积是岛上值为 1 的…...

MySQL入门学习教程(一)

mysql简介 1、什么是数据库 ? 数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅…...

【CTF-web】修改请求头(XFF)

题目链接:https://ctf.bugku.com/challenges/detail/id/79.html 随意输入后可以看到需要本地管理员登录,得知这是一道需要修改XFF头的题。 XFF即X-Forwarded-For,该请求标头是一个事实上的用于标识通过代理服务器连接到 web 服务器的客户端的…...

springboot mongodb 配置多数据源

我想要的效果是,一个类统一管理多数据源,我传个参数进去,它就能返回我对应的mongotemplate 但是根据"mongbodb 多数据源"的关键词,找不到我想要的效果。 网上大多都是明确知道自己是几个数据源,然后每个数…...

Python3 安装、环境变量配置、PyCharm新建Python项目

一、安装包下载 Pyhton官网下载>>最新稳定版的安装包: 找到合适的版本进行下载: 如果下载较慢,此处提供一个3.10.11的稳定版本的安装包: 链接:https://pan.baidu.com/s/16GnWjkGFuSfWfaI9UVX8qA?pwd4u5o 提取…...

用python来爬取某鱼的商品信息(2/2)

目录 上一篇文章 本章内容 设置浏览器为运行结束后不关闭(可选) 定位到搜索框的xpath地址 执行动作 获取cookie 保存为json文件 修改cookie的sameSite值并且导入cookie 导入cookie(出错) 导入cookie(修改后&…...

【Fegin技术专题】「原生态」打开Fegin之RPC技术的开端,你会使用原生态的Fegin吗?(上)

前提介绍 Feign是SpringCloud中服务消费端的调用框架,通常与ribbon,hystrix等组合使用。由于遗留原因,某些项目中,整个系统并不是SpringCloud项目,甚至不是Spring项目,而使用者关注的重点仅仅是简化http调…...

React Native Vector Icons的使用

介绍 React Native Vector Icons是一个用于在React Native应用中使用矢量图标的库。它提供了许多常见的图标集,如FontAwesome、Ionicons等。 使用 首先,你需要在你的React Native项目中安装React Native Vector Icons库。可以使用以下命令进行安装&…...

Redis安装和配置(Linux)

一、安装准备 VMware虚拟机准备: https://www.vmware.com/cn/products/workstation-pro.html Centos7.0准备: https://www.centos.org/ 二、安装 安装好VMware以后,进入VMware,然后创建新的虚拟机 创建好虚拟机以后,进行安装C…...

安卓源码分析(10)Lifecycle实现组件生命周期管理

参考: https://developer.android.google.cn/topic/libraries/architecture/lifecycle?hlzh-cn#java https://developer.android.google.cn/reference/androidx/lifecycle/Lifecycle 文章目录 1、概述2、LifeCycle类3、LifecycleOwner类4、LifecycleObserver类 1、…...

IP 多播协议(IP Multicast Protocol)

IP 多播协议(IP Multicast Protocol)是一种在网络中一对多传输数据的通信方式。在传统的单播通信中,数据从一个发送方发送到一个接收方;而在多播通信中,数据可以从一个发送方传输到多个接收方,从而有效地节…...

Jmeter 配置环境变量,简明教程专享

通过给 JMeter 配置环境变量,可以快捷的打开 JMeter: 打开终端。执行 jmeter。 配置环境变量的方法如下。 Mac 和 Linux 系统 在 ~/.bashrc 中加如下内容: export JMETER_HOMEJMeter所在目录 export PATH$JAVA_HOME/bin:$PATH:.:$JMETER…...

WebService—XFire配置笔记

在学习之前,一直以为WebService就是一个工具,在两个服务器之间建立一个通信,帮我们把需要传输的数据组织成规范的XML数据并发送到目的地,实际情况也确实是这样的,不过更高级一点的是,XFire不但可以帮我们生成XML发送,而且可以在接收了xml之后还可以直接返回对象给我们用…...

【LangChain学习】基于PDF文档构建问答知识库(一)前期准备

这系列主要介绍如何使用LangChain大模型,结合ChatGPT3.5,基于PDF文档构建专属的问答知识库。 一、 环境搭建 LangChain 和 OpenAI 本身可支持 Nodejs 和 Python 两个版本,笔者后续的介绍主要用到Python版本,如果有需要Nodejs版本…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候,写过一篇简单实现,后期随着对该模型的深入研究,本次记录涉及到prophet 的公式以及参数调优,从公式可以更直观…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)

Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

腾讯云V3签名

想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

Oracle11g安装包

Oracle 11g安装包 适用于windows系统&#xff0c;64位 下载路径 oracle 11g 安装包...