基于Elman神经网络的电力负荷预测
1 案例背景
1.1 Elman神经网络概述
根据神经网络运行过程中的信息流向,可将神经网络可分为前馈式和反馈式两种基本类型。前馈式网络通过引入隐藏层以及非线性转移函数可以实现复杂的非线性映射功能。但前馈式网络的输出仅由当前输人和权矩阵决定,而与网络先前的输出结果无关。反馈型神经网络也称递归网络或回归网络。反馈神经网络的输入包括有延迟的输入或者输出数据的反馈,由于存在有反馈的输入,所以它是一种反馈动力学系统;这种系统的学习过程就是它的神经元状态的变化过程,这个过程最终会达到一个神经元状态不变的稳定态,也标志着学习过程的结束。
反馈网络的动态学习特征,主要由网络的反馈形式决定。反馈网络的反馈形式是比较多样化的,有输人延迟,单层输出反馈,神经元自反馈、两层之间互相反馈等类型。常见的反馈型神经网络有Elman神经网络、Hopfield神经网络和与离散Hopfield结构相似的 Boltzmann神经网络等。Elman 神经网络是Elman于1990年提出的,该模型在前馈式网络的隐含层中增加了一个承接层,作为一步延时的算子,以达到记忆的目的,从而使系统具有适应时变特性的能力,能直接动态反映动态过程系统的特性。
1.2 Elman神经网络结构
Elman型神经网络一般分为四层:输入层、隐含层(中间层),承接层和输出层。如图23-1所示,输入层、隐含层、输出层的连接类似于前馈式网络,输入层的单元仅起信号传输作用,输出层单元起线性加权作用。隐含层单元的传递函数可采用线性或非线性函数﹐承接层又称上下文层或状态层,它用来记忆隐含层单元前一时刻的输出值并返回给网络的输人,可以认为是一个一步延时算子。
Elman神经网络的特点是隐含层的输出通过承接层的延迟与存储,自联到隐含层的输人。这种自联方式使其对历史状态的数据具有敏感性,内部反馈网络的加入增强了网络本身处理动态信息的能力,从而达到动态建模的目的。此外,Elman神经网络能够以任意精度逼近任意非线性映射,可以不考虑外部噪声对系统影响的具体形式,如果给出系统的输入输出数据对,就可以对系统进行建模。
1.3 Elman神经网络学习过程
以图23 -1为例,Elman 网络的非线性状态空间表达式为
1.4电力负荷预测概述
电力系统由电力网、电力用户共同组成,其任务是给广大用户不间断地提供经济、可靠、符合质量标准的电能,满足各类负荷的需求,为社会发展提供动力。由于电力的生产与使用具有特殊性,即电能难以大量储存,而且各类用户对电力的需求是时刻变化的,这就要求系统发电出力应随时与系统负荷的变化动态平衡,即系统要最大限度地发挥出设备能力使整个系统保持稳定且高效地运行,以满足用户的需求。否则,就会影响供用电的质量,甚至危及系统的安全与稳定。因此,电力系统负荷预测技术发展了起来,并且是这一切得以顺利进行的前提和基础。
负荷预测的核心问题是预测的技术问题,或者说是预测的数学模型。传统的数学模型是用现成的数学表达式加以描述,具有计算量小,速度快的优点,但同时也存在很多的缺陷和局限性,比如不具备自学习,自适应能力、预测系统的鲁棒性没有保障等。特别是随着我国经济的发展,电力系统的结构日趋复杂,电力负荷变化的非线性,时变性和不确定性的特点更加明显,很难建立一个合适的数学模型来清晰地表达负荷和影响负荷的变量之间的关系。而基于神经网络的非数学模型预测法,为解决数学模型法的不足提供了新的思路。
2 模型建立
利用人工神经网络对电力系统负荷进行预测,实际上是利用人工神经网络可以以任意精度逼近任一非线性函数的特性及通过学习历史数据建模的优点。而在各种人工神经网络中,反馈式神经网络又因为其具有输人延迟,进而适合应用于电力系统负荷预测。根据负荷的历史数据,选定反馈神经网络的输入,输出节点,来反映电力系统负荷运行的内在规律,从而达到预测未来时段负荷的目的。因此,用人工神经网络对电力系统负荷进行预测,首要的问题是确定神经网络的输入、输出节点,使其能反映电力负荷的运行规律。
一般来说,电力系统的负荷高峰通常出现在每天的9~19时之间,出于篇幅的原因,本案例只对每天上午的逐时负荷进行预测,即预测每天9~11时共3小时的负荷数据。电力系统负荷数据如表23-1所列,表中数据为真实数据,已经经过归一化。
利用前8天的数据作为网络的训练样本,每3天的负荷作为输人向量,第4天的负荷作为目标向量。这样可以得到5组训练样本。第9天的数据作为网络的测试样本,验证网络能否合理地预测出当天的负荷数据。
3 MATLAB实现
本例中用到的关键函数为newelm(),其作用为创建一个 Elman网络,其调用格式如下:net = newelm(PR,[S1 S2….SN1],{TF1 TF2...TEN1},BTF,BLF,PF, IPF,OPF)
其中,PR为R组输入元素的最小值和最大值的设定值,R*2维的矩阵;T为 SN*Q2的具有SN个元素的输出矩阵;Si为第i层的长度;TFi为第i层的传递函数,默认值:隐藏层为'tansig',输出层为'purelin ';BTF为反向传播神经网络训练函数,默认值为'trainlm');BLF为反向传播神经网络权值/阈值学习函数,默认值为'learngdm ';PF为性能函数,默认值为'mse';IPF为输人处理函数﹐默认值为:'{' fixunknowns ',' removeconstantrows ',' mapminmax 'y';OPF为输出处理函数,默认值为'{'removeconstantrows ',' mapminmax 'y'。
MATLAB实现代码如下:
%% 清空环境变量clc;
clear all
close all
nntwarn off;%% 数据载入load data;
a=data;%% 选取训练数据和测试数据for i=1:6p(i,:)=[a(i,:),a(i+1,:),a(i+2,:)];
end
% 训练数据输入
p_train=p(1:5,:);
% 训练数据输出
t_train=a(4:8,:);
% 测试数据输入
p_test=p(6,:);
% 测试数据输出
t_test=a(9,:);% 为适应网络结构 做转置p_train=p_train';
t_train=t_train';
p_test=p_test';%% 网络的建立和训练
% 利用循环,设置不同的隐藏层神经元个数
nn=[7 11 14 18];
for i=1:4threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];% 建立Elman神经网络 隐藏层为nn(i)个神经元net=newelm(threshold,[nn(i),3],{'tansig','purelin'});% 设置网络训练参数net.trainparam.epochs=1000;net.trainparam.show=20;% 初始化网络net=init(net);% Elman网络训练net=train(net,p_train,t_train);% 预测数据y=sim(net,p_test);% 计算误差error(i,:)=y'-t_test;
end%% 通过作图 观察不同隐藏层神经元个数时,网络的预测效果plot(1:1:3,error(1,:),'-ro','linewidth',2);
hold on;
plot(1:1:3,error(2,:),'b:x','linewidth',2);
hold on;
plot(1:1:3,error(3,:),'k-.s','linewidth',2);
hold on;
plot(1:1:3,error(4,:),'c--d','linewidth',2);
title('Elman预测误差图')
set(gca,'Xtick',[1:3])
legend('7','11','14','18','location','best')
xlabel('时间点')
ylabel('误差')
hold off;

由图可知:网络预测误差还是比较小的,但是,中间神经元为14时出现了较大的误差。这可能是训练样本太小导致的。当中间神经元为11个时,网络的预测误差最小,也就是预测性能最好。因此,对于本例,中间层神经元的最佳数目应该是11个。
4 案例扩展
目前,电力系统的负荷预测仍然是一个难点,这主要是由于电力系统的复杂性造成的。本案例为时间序列类型数据预测提供了依据和思路。但对于电力负荷预测来说,只考虑历史数据是不够的,即建模不仅仅取决于历史数据,同时也受许多突变因素影响,如基础数据信息的局限、天气信息数据的缺乏等。另外,由于工作日和节假日的负荷不同,还要考虑时间特征值。本例由于篇幅有限,对预测模型做了简单化处理,但这并不影响Elman预测功能的演示。
Elman神经网络是一种典型的动态神经网络,它是在BP网络基本结构的基础上,通过存储内部状态使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力由于训练样本较少,预测时出现相对较大误差的情况是可能的,可以通过加大样本量、事先剔除错误数据等避免。
相关文章:

基于Elman神经网络的电力负荷预测
1 案例背景 1.1 Elman神经网络概述 根据神经网络运行过程中的信息流向,可将神经网络可分为前馈式和反馈式两种基本类型。前馈式网络通过引入隐藏层以及非线性转移函数可以实现复杂的非线性映射功能。但前馈式网络的输出仅由当前输人和权矩阵决定,而与网络先前的输出结果无关。…...
LeetCode 0088. 合并两个有序数组
【LetMeFly】88.合并两个有序数组:O(m 1) O(1)的做法 力扣题目链接:https://leetcode.cn/problems/merge-sorted-array/ 给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2…...

定义行业新标准?谷歌:折叠屏手机可承受20万次折叠
根据Patreon账户上的消息,Android专家Mishaal Rahman透露,谷歌计划推出新的硬件质量标准,以满足可折叠手机市场的需求。Android原始设备制造商(OEM)将需要完成谷歌提供的问卷调查,并提交样品设备进行严格审…...
在vscode中配置C/C++环境GCC on Linux
https://code.visualstudio.com/docs/cpp/config-linux 官方文档 准备工作 为了能够在vs code中编译运行C/C程序,需要下载: Visual Studio Code C扩展插件,cuda,,, 对于该扩展插件,打开vs c…...
windows执行完LoadLibrary()后,可以删除源动态库文件,函数不会锁库文件
windows执行完LoadLibrary()后,可以删除源动态库文件,函数不会锁库文件。 #include <iostream> #include <Windows.h>int main() {char path[MAX_PATH]{};GetCurrentDirectoryA(sizeof(path), path);HMODULE lib LoadLibraryA("testd…...

ios 知识
IOS 类文件.h和.m中interface的区别 大家都知道我们在创建类文件时会发现: #import <UIKit/UIKit.h>interface ViewController : UIViewControllerend和 #import "ViewController.h"interface ViewController ()end那么他们之间有何区别呢&#x…...
8 | 美国航班数据分析
"在现代快节奏的生活中,航空旅行已经成为人们出行的重要方式之一。然而,航班的准时性一直以来都是旅客和航空公司关注的焦点。无论是商务出差还是休闲度假,乘客们都希望能够在既定的时间内安全、准时地到达目的地。而对于航空公司而言,准点运营不仅关乎乘客体验,还涉…...
app.use(express.json()) 使用
Express内置的中间件 自 Express 4.16.0 版本开始,Express 内置了 3 个常用的中间件,极大的提高了 Express 项目的开发效率和体验 express.static 快速托管静态资源的内置中间件,例如: HTML 文件、图片、CSS 样式等(无…...

基于PyTorch的图像识别
前言 图像识别是计算机视觉领域的一个重要方向,具有广泛的应用场景,如医学影像诊断、智能驾驶、安防监控等。在本项目中,我们将使用PyTorch来开发一个基于卷积神经网络的图像识别模型,用来识别图像中的物体。下面是要识别的四种物…...

js合并数组对象(将数组中具有相同属性对象合并到一起,组成一个新的数组)
一、根据数组对象中某一key值,合并相同key值的字段,到同一个数组对象中,组成新的数组 1.原数组: var array [{ id: 1, name: Alice },{ id: 2, name: Bob },{ id: 1, age: 25 },{ id: 3, name: Charlie, age: 30 } ];2.合并后数…...

Spring BeanPostProcessor 接口的作用和使用
BeanPostProcessor 接口是 Spring 框架中的一个扩展接口,用于在 Spring 容器实例化、配置和初始化 bean 的过程中提供自定义的扩展点。通过实现这个接口,您可以在 bean 实例创建的不同生命周期阶段插入自己的逻辑,从而实现对 bean 行为的定制…...
Android 13 Hotseat定制化修改——006 hotseat图标禁止移动到Launcher中
目录 一.背景 二.方案 三.具体实践 一.背景 客户定制需要修改让hotseat中的icon不要移动到Launcher中,所以需要进行定制 二.方案 原生的Hotseat与Launcher是可以相互移动的,然后现在的需求是Hotseat中的图标只能在Hotseat中移动,所以需要做下限制 思路:在事件拦截的地…...

RabbitMQ 发布确认机制
发布确认模式是避免消息由生产者到RabbitMQ消息丢失的一种手段 发布确认模式 原理说明实现方式开启confirm(确认)模式阻塞确认异步确认 总结 原理说明 生产者通过调用channel.confirmSelect方法将信道设置为confirm模式,之后RabbitMQ会返回Co…...
微信小程序使用rich-text解析富文本字符串的时候,遇到image标签图片很大超过屏幕
场景: 使用uniapp开发微信小程序,解析富文本文章需求 用到的组件: u-view2.0的u-parse uniapp提供的rich-text 以上两种组件都是解析富文本的作用,一般用于富文本解析场景,比如解析文章内容,商品详情&am…...

使用IIS服务器部署Flask python Web项目
参考文章 ""D:\Program Files (x86)\Python310\python310.exe"|"D:\Program Files (x86)\Python310\lib\site-packages\wfastcgi.py"" can now be used as a FastCGI script processor参考文章 请求路径填写*,模块选择FastCgiModule&…...

sentinel核心流程源码解析
sentinel的处理槽(ProcessorSlot) 可以说,sentinel实现的各种功能就是由各处理槽完成的 ,ProcessorSlot定义了四个方法: 当进入该处理槽时触发该方法 处理完 entry方法之后触发该方法 退出该处理槽时触发该方法 exit方法处理完成时触发该方法 sentinel的…...

中睿天下Coremail | 2023年第二季度企业邮箱安全态势观察
今日,中睿天下联合Coremail邮件安全发布《2023第二季度企业邮箱安全性研究报告》,对2023第二季度和2023上半年的企业邮箱的安全风险进行了分析。 一 垃圾邮件同比下降16.38% 根据监测,2023年Q2垃圾邮件数量达到6.47亿封,环比下降…...
桶排序-1184:明明的随机数
【题目描述】 明明想在学校中请一些同学一起做一项问卷调查,为了实验的客观性,他先用计算机生成了N个1到1000之间的随机整数(N≤100),对于其中重复的数字,只保留一个,把其余相同的数去掉&#x…...
Spring Boot中整合Keycloak OpenID Connect(OIDC)
在Spring Boot中整合Keycloak OpenID Connect(OIDC)是一个常见的任务,用于实现身份验证和授权。Keycloak是一个开源的身份和访问管理解决方案,而OpenID Connect是构建在OAuth 2.0之上的认证和授权协议。下面是一个简单的步骤指南&…...

如何使用Mac终端给树莓派pico构建C/C++程序进行开发,以及遇到各种问题该怎么处理,不使用任何IDE或编辑器(例如VS Code)
写本文的原因是官方的教程已经过时了,如果你现在按照官方教程来在 Mac 上进行配置,那么会遇到一堆问题,比如我几乎把能踩的“雷”都踩了。所以这里记录了完整过程,以及各种错误的原因和处理方法,不然以后换 Mac 了或者…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式
一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明:假设每台服务器已…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...

Linux 内存管理实战精讲:核心原理与面试常考点全解析
Linux 内存管理实战精讲:核心原理与面试常考点全解析 Linux 内核内存管理是系统设计中最复杂但也最核心的模块之一。它不仅支撑着虚拟内存机制、物理内存分配、进程隔离与资源复用,还直接决定系统运行的性能与稳定性。无论你是嵌入式开发者、内核调试工…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...

Python 实现 Web 静态服务器(HTTP 协议)
目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
深入浅出Diffusion模型:从原理到实践的全方位教程
I. 引言:生成式AI的黎明 – Diffusion模型是什么? 近年来,生成式人工智能(Generative AI)领域取得了爆炸性的进展,模型能够根据简单的文本提示创作出逼真的图像、连贯的文本,乃至更多令人惊叹的…...