TM4C123库函数学习(2)--- LED闪烁,滴答定时器精准延时
前言
(1)阅读本文之前,需要先看TM4C123库函数学习(1)— 点亮LED+TM4C123的ROM函数简介+keil开发环境搭建篇。
(2)TM4C123是M4的内核,拥有一个24位向下计数的SysTick定时器。,可用于生成定期中断。
<1>它可以作为系统的系统时钟节拍,可以用来轮询或者用于任务调度。
<2>滴答定时器可作为RTOS的时基单元。
<3>一种使用系统时钟的高速报警定时器。
<4>可变速率报警或信号定时器-持续时间是范围-依赖于使用的参考时钟和计数器的动态范围。
<5>基于缺席/会议时间的内部时钟源控制。STCTRL控制和状态寄存器中的COUNT位可以用来确定一个动作是否在设定的时间内完成,作为动态时钟管理控制循环的一部分。
(3)我们如果是裸机开发,这个定时器一般用于精准延时,或者定时器调度。
函数介绍
ROM_SysCtlClockGet()
这个函数可以获取系统时钟的速率。按照上文,我们将系统时钟设置为80MHZ,所以这个函数最终会返回80 000 000。
/****** 函数声明 ******/
//这个存放在ROM
uint32_t ROM_SysCtlClockGet(void);
//这个是存放在flash
uint32_t SysCtlClockGet(void);/****** 函数介绍 ******/
/* 作用 : 获取系统时钟频率* 传入参数 : 无* 返回参数 : 一个32bit的数据,为系统时钟速率。
*/
ROM_SysTickPeriodSet()
(1)设置SysTick计数器的周期。如果我们写成SysTickPeriodSet(SysCtlClockGet() / 1000000UL);表示每过1us进入一次滴答定时器中断函数。
(2)可能会有人不理解,为什么会这样呢?
<1>首先,我上面说了SysCtlClockGet()可以获取系统时钟频率,因为现在是80MHZ,所以返回80MHZ,然后除以1MHZ,所以SysTickPeriodSet(SysCtlClockGet() / 1000000UL); == SysTickPeriodSet(80);
<2>因为系统时钟为80MHZ,所以时钟每跳变一次是1/80us,而我们设置的滴答计数器的周期为80,所以每过1us进入一次滴答定时器中断。
/****** 函数声明 ******/
//这个存放在ROM
void ROM_SysTickPeriodSet(uint32_t ui32Period);
//这个是存放在flash
void SysTickPeriodSet(uint32_t ui32Period);/****** 函数介绍 ******/
/* 作用 : 设置SysTick计数器的周期。* 传入参数 :* ui32Period : 一个32bit的数据,为滴答定时器周期。* 返回参数 : 无
*/
SysTickIntRegister()
(1)这个用于注册滴答定时器中断函数,当滴答定时器溢出时候,进入传入的那个函数。
(2)这个有没有ROM函数,不清楚,反正我没有找到。
/****** 函数声明 ******/
//这个是存放在flash
void SysTickIntRegister(void (*pfnHandler)(void));/****** 函数介绍 ******/
/* 作用 : 注册滴答定时器中断函数* 传入参数 : * void (*pfnHandler)(void):滴答定时器溢出中断的中断函数,注意,这个中断服务函数无传入参数,无返回值!!!* 返回参数 : 无
*/
ROM_SysTickIntEnable()
使能SysTick中断,如果不调用这个函数,滴答定时器的溢出中断将无法被调用。
/****** 函数声明 ******/
//这个存放在ROM
void ROM_SysTickIntEnable(void);
//这个是存放在flash
void SysTickIntEnable(void);/****** 函数介绍 ******/
/* 作用 : 使能SysTick中断* 传入参数 : 无* 返回参数 : 无
*/
ROM_SysTickIntEnable()
使能SysTick计数器。如果没有使能滴答定时器,那么滴答定时器将不会计数,同时中断服务函数永远也进不去。
/****** 函数声明 ******/
//这个存放在ROM
void ROM_SysTickIntEnable(void);
//这个是存放在flash
void SysTickIntEnable(void);/****** 函数介绍 ******/
/* 作用 : 使能SysTick计数器* 传入参数 : 无* 返回参数 : 无
*/
实操
main.c
#include "stdio.h"
#include <stdint.h>
#include <stdbool.h>
#include "hw_memmap.h"
#include "hw_types.h"
#include "hw_gpio.h"
#include "debug.h"
#include "fpu.h"
#include "gpio.h"
#include "pin_map.h"
#include "rom.h"
#include "sysctl.h"
#include "uart.h"
#include "uartstdio.h"
#include "SystickTime.h"int main(void)
{ ROM_FPUEnable();//使能浮点单元。这个函数必须在执行任何硬件浮点运算之前被调用;如果不这样做,将导致NOCP使用错误。ROM_FPULazyStackingEnable();//浮点延迟堆栈,减少中断响应延迟 ROM_SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_XTAL_16MHZ |SYSCTL_OSC_MAIN);//配置系统时钟,系统时钟频率400M/2/2.5=80MROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF); //使能GPIOF外设 ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_4); //将LED设置为输出initTime(); //初始化滴答定时器while(1){GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_4, !GPIO_PIN_4); //置低位点亮delay_ms(100); GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_4, GPIO_PIN_4); //置高位熄灭delay_ms(100);}
}
SystickTime.c
#include <stdint.h>
#include <stdbool.h>
#include "Time.h"
#include "SystickTime.h"
#include "sysctl.h"
#include "systick.h"static volatile uint32_t counter;/* 滴答定时器中断,每微妙进入一次,count表示过了多少微妙,最多计时71分钟*/
static void SycTickHandler(void) {counter++;
}
/* 作用 : 初始化滴答定时器,让滴答定时器每微妙进入一次中断* 传入参数 : 无* 返回值 : 无
*/
void initTime(void) {SysTickPeriodSet(SysCtlClockGet() / 1000000UL); // 1000表示毫秒,1000000表示微秒SysTickIntRegister(SycTickHandler); //注册滴答定时器中断服务函数SysTickIntEnable(); //使能SysTick中断SysTickEnable(); //使能SysTick计数器
}/* 作用 : 进行毫秒延时* 传入参数 :ms : 要延时多少毫秒* 返回值 : 无
*/
void delay(uint32_t ms) {delayMicroseconds(ms * 1000UL);
}/* 作用 : 进行微妙延时* 传入参数 : us : 要延时的微妙数* 返回值 : 无
*/
void delayMicroseconds(uint32_t us) {uint32_t start = micros(); //记录准备开始延时的时间,单位微秒//如果当前时间减去开始延时的时间小于传入值,阻塞。while ((int32_t)(micros() - start) < us) {// Do nothing};
}/* 作用 : 开机到现在返回过了多少毫秒* 传入参数 : 无* 返回值 : 返回开机到现在过了多少毫秒
*/
uint32_t millis(void) {return counter / 1000UL;
}/* 作用 : 开机到现在返回过了多少微秒* 传入参数 : 无* 返回值 : 返回开机到现在过了多少微秒
*/
uint32_t micros(void) {return counter;
}/* 作用 : 延时时间,单位毫秒* 传入参数 : 要延时的毫秒数* 返回值 : 无
*/
void Delay_Ms(uint32_t x)
{delay(x);
}/* 作用 : 延时时间,单位毫秒* 传入参数 : 要延时的微妙数* 返回值 : 无
*/
void delay_ms(uint32_t x)
{Delay_Ms(x);
}/* 作用 : 延时时间,单位微秒* 传入参数 : 要延时的微秒数* 返回值 : 无
*/
void delay_us(uint32_t x)
{delayMicroseconds(x);
}/* 作用 : 延时时间,单位微秒* 传入参数 : 要延时的微秒数* 返回值 : 无
*/
void Delay_Us(uint32_t x)
{delayMicroseconds(x);
}
SystickTime.h
#ifndef __SYSTICKTIME_h__
#define __SYSTICKTIME_h__void initTime(void); //初始化滴答定时器
void delay(uint32_t ms); //进行毫秒延时
void delayMicroseconds(uint32_t us); //进行微妙延时
uint32_t millis(void); //返回开机到现在过了多少毫秒
uint32_t micros(void); //返回开机到现在过了多少微秒
void Delay_Ms(uint32_t x); //延时时间,单位毫秒
void Delay_Us(uint32_t x); //延时时间,单位微秒
void delay_ms(uint32_t x); //延时时间,单位毫秒
void delay_us(uint32_t x); //延时时间,单位微秒#endif
相关文章:
TM4C123库函数学习(2)--- LED闪烁,滴答定时器精准延时
前言 (1)阅读本文之前,需要先看TM4C123库函数学习(1)— 点亮LEDTM4C123的ROM函数简介keil开发环境搭建篇。 (2)TM4C123是M4的内核,拥有一个24位向下计数的SysTick定时器。࿰…...
Linux: network: tcp: back-off技术
当一个包需要重传的时候,会使用 exponential back-off来计算下一次重传的时间。 这个back-off的使用还是相当的广泛:《Adaptive Backoff Synchronization Technique》https://dl.acm.org/doi/pdf/10.1145/74926.74970 The general idea of backoff has …...
36 | 银行贷款数据分析
本文将以银行贷款数据分析为主题,深入探讨如何运用数据科学的方法,揭示银行贷款领域的内在规律和趋势。通过对贷款数据的分析,我们能够洞察不同类型贷款的分布情况、贷款金额的变化趋势,以及借款人的特征和还款情况等关键信息。 通过运用Python编程语言及相关的数据分析工…...
计算机网络-物理层(二)- 传输方式
计算机网络-物理层(二)- 传输方式 串型传输与并行传输 串行传输:是指数据是一个比特一个比特依次发送的,因此在发送端和接收端之间,只需要一条数据传输线路即可 并行传输:是指一次发送n个比特而不是一个比特,因此发送…...
超强台风“杜苏芮”来袭!如何实现安全可靠的通信?
暴雨来袭 超强台风“杜苏芮”是2023年太平洋台风季第5个被命名的台风,在我国东南沿海地区造成了巨大的影响,在7月28日登录福建省晋江市时,“杜苏芮”中心附近最大风力15级,达到了超强台风的等级;福州市区、闽侯、莆田…...
内网隧道—HTTP\DNS\ICMP
本文仅限于安全研究和学习,用户承担因使用此工具而导致的所有法律和相关责任! 作者不承担任何法律和相关责任! HTTP隧道 Neo-reGeorg Neo-reGeorg 是一个旨在积极重构 reGeorg 的项目,目的是: 提高可用性࿰…...
QT mouseTracking
在Qt中要捕捉鼠标移动事件需要重写MouseMoveEvent,但是MouseMoveEvent为了不太耗资源在默认状态下是要鼠标按下才能捕捉到。要想鼠标不按下时的移动也能捕捉到,需要setMouseTracking(true)。 如果鼠标跟踪失效(默认),…...
java操作mongdb【超详细】
Java操作 搭建 搭建 依赖 <!--mongodb--><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId></dependency>配置文件 spring:data:mongodb:host…...
JavaScript函数
什么是函数? 在 JavaScript 中,函数是一段被封装起来用于特定任务的可重复使用的代码块。 例如: function logger() {console.log(IT知识一享); }这样就创造了logger()函数,后续可以重复利用这个函数让它输出日志,后…...
RISC-V公测平台发布 · 使用YCSB测试SG2042上的MySQL性能
实验介绍: YCSB(全称为Yahoo! Cloud Serving Benchmark),该性能测试工具由Java语言编写(在之前的MC文章中也提到过这个,如果没看过的读者可以去看看之前MC那一期),主要用于云端或者…...
母婴即时零售行业数据可视化分析
对新晋父母来说,很多母婴用品如同一位贴心的助手,为他们的宝宝提供温暖和呵护。从婴儿床垫到可爱的拼图玩具,每一件用品都是为宝宝的成长和发展量身定制。对于繁忙的父母们而言,这些用品不仅帮助照顾孩子,更是为他们减…...
快速解决IDEA中类的图标变成J,不是C的情况
有时候导入新的项目后,会出现如下情况,类的图标变成J,如图: 直接上解决方法: 找到项目的pom.xml,右键,在靠近最下方的位置找到Add as Maven Project,点击即可。 此时,一般类的图标就…...
vue学习笔记
1.官网 v2官网 https://v2.cn.vuejs.org/ v3官网 https://cn.vuejs.org/ 2.vue引入 在线引入 <script src"https://cdn.jsdelivr.net/npm/vue2.7.14/dist/vue.js"></script> 下载引入(下载链接) https://v2.cn.vuejs.org/js/vue.js 3.初始化渲…...
难解的bug
android.app.RemoteServiceException: Context.startForegroundService() did not then call Service.startForeground(): ServiceRecord 【Android TimeCat】 解决 context.startforegroundservice() did not then call service.startforeground() | XiChens Blog http://www…...
人文景区有必要做VR云游吗?如何满足游客出行需求?
VR云游在旅游行业中的应用正在快速增长,为游客带来沉浸式体验的同时,也为文旅景区提供了新的营销方式。很多人说VR全景展示是虚假的,比不上真实的景区触感,人文景区真的有必要做VR云游吗?我的答案是很有必要。 如果你认…...
【字节跳动青训营】后端笔记整理-1 | Go语言入门指南:基础语法和常用特性解析
**本人是第六届字节跳动青训营(后端组)的成员。本文由博主本人整理自该营的日常学习实践,首发于稀土掘金:🔗Go语言入门指南:基础语法和常用特性解析 | 青训营 本文主要梳理自第六届字节跳动青训营ÿ…...
3.解构赋值
解构赋值是一种快速为变量赋值的简洁语法,本质上仍然是为变量赋值。 3.1数组解构 数组解构是 将数组的单元值快速批量赋值给一系列变量 的简洁语法 1.基本语法: (1)赋值运算符左侧的[ ]用于批量声明变量,右侧数组的单元值将被赋…...
ChatGPT在智能游戏和游戏AI中的应用如何?
ChatGPT在智能游戏和游戏AI领域具有广泛的应用潜力,可以为游戏体验增添智能和交互性,同时也有助于游戏开发者创造更丰富、更引人入胜的游戏内容。以下将详细探讨ChatGPT在智能游戏和游戏AI中的应用。 ## 1. 游戏角色的智能化 在角色扮演游戏࿰…...
【安卓串口通信】
安卓串口通信需要使用到串口适配器和USB OTG线。首先需要在Android设备上安装串口调试助手或其他支持串口通信的应用程序。然后将串口适配器连接到Android设备,使用USB OTG线连接即可。 接下来,您需要打开串口调试助手或其他应用程序,…...
电气测试相关
项目: 长期过电压 瞬态过电压 瞬态欠压 跳跃启动 卸载 纹波电压 电源电压缓慢下降和上升 电源电压缓慢下降、快速上升 复位行为 短暂中断 启动脉冲 带电气系统控制的电压曲线 引脚中断 连接器中断 反极性 信号线和负载电路短路 启动行为 对分流不…...
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练
前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
