当前位置: 首页 > news >正文

Floyd算法

正如我们所知道的,Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展,三个for循环就可以解决问题,所以它的时间复杂度为O(n^3)。

Floyd算法的基本思想如下:从任意节点A到任意节点B的最短路径不外乎2种可能,1是直接从A到B,2是从A经过若干个节点X到B。所以,我们假设Dis(AB)为节点A到节点B的最短路径的距离,对于每一个节点X,我们检查Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,证明从A到X再到B的路径比A直接到B的路径短,我们便设置Dis(AB) = Dis(AX) + Dis(XB),这样一来,当我们遍历完所有节点X,Dis(AB)中记录的便是A到B的最短路径的距离。

很简单吧,代码看起来可能像下面这样:

for ( int i = 0; i < 节点个数; ++i ){for ( int j = 0; j < 节点个数; ++j ){for ( int k = 0; k < 节点个数; ++k ){if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ){// 找到更短路径Dis[i][j] = Dis[i][k] + Dis[k][j];}}}}

但是这里我们要注意循环的嵌套顺序,如果把检查所有节点X放在最内层,那么结果将是不正确的,为什么呢?因为这样便过早的把i到j的最短路径确定下来了,而当后面存在更短的路径时,已经不再会更新了。

让我们来看一个例子,看下图:

图中红色的数字代表边的权重。如果我们在最内层检查所有节点X,那么对于A->B,我们只能发现一条路径,就是A->B,路径距离为9。而这显然是不正确的,真实的最短路径是A->D->C->B,路径距离为6。造成错误的原因就是我们把检查所有节点X放在最内层,造成过早的把A到B的最短路径确定下来了,当确定A->B的最短路径时Dis(AC)尚未被计算。所以,我们需要改写循环顺序,如下:

for ( int k = 0; k < 节点个数; ++k ){for ( int i = 0; i < 节点个数; ++i ){for ( int j = 0; j < 节点个数; ++j ){if ( Dis[i][k] + Dis[k][j] < Dis[i][j] ){// 找到更短路径Dis[i][j] = Dis[i][k] + Dis[k][j];}}}}

这样一来,对于每一个节点X,我们都会把所有的i到j处理完毕后才继续检查下一个节点。

那么接下来的问题就是,我们如何找出最短路径呢?这里需要借助一个辅助数组Path,它是这样使用的:Path(AB)的值如果为P,则表示A节点到B节点的最短路径是A->...->P->B。这样一来,假设我们要找A->B的最短路径,那么就依次查找,假设Path(AB)的值为P,那么接着查找Path(AP),假设Path(AP)的值为L,那么接着查找Path(AL),假设Path(AL)的值为A,则查找结束,最短路径为A->L->P->B。

那么,如何填充Path的值呢?很简单,当我们发现Dis(AX) + Dis(XB) < Dis(AB)成立时,就要把最短路径改为A->...->X->...->B,而此时,Path(XB)的值是已知的,所以,Path(AB) = Path(XB)。

好了,基本的介绍完成了,接下来就是实现的时候了,这里我们使用图以及邻接矩阵:

#define INFINITE 1000           // 最大值#define MAX_VERTEX_COUNT 20   // 最大顶点个数//struct Graph{int     arrArcs[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];    // 邻接矩阵int     nVertexCount;                                 // 顶点数量int     nArcCount;                                    // 边的数量};//

首先,我们写一个方法,用于读入图的数据:

void readGraphData( Graph *_pGraph ){std::cout << "请输入顶点数量和边的数量: ";std::cin >> _pGraph->nVertexCount;std::cin >> _pGraph->nArcCount;std::cout << "请输入邻接矩阵数据:" << std::endl;for ( int row = 0; row < _pGraph->nVertexCount; ++row ){for ( int col = 0; col < _pGraph->nVertexCount; ++col ){std::cin >> _pGraph->arrArcs[row][col];}}}

接着,就是核心的Floyd算法:

void floyd( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount ){// 先初始化_arrPathfor ( int i = 0; i < _nVertexCount; ++i ){for ( int j = 0; j < _nVertexCount; ++j ){_arrPath[i][j] = i;}}//for ( int k = 0; k < _nVertexCount; ++k ){for ( int i = 0; i < _nVertexCount; ++i ){for ( int j = 0; j < _nVertexCount; ++j ){if ( _arrDis[i][k] + _arrDis[k][j] < _arrDis[i][j] ){// 找到更短路径_arrDis[i][j] = _arrDis[i][k] + _arrDis[k][j];_arrPath[i][j] = _arrPath[k][j];}}}}}

OK,最后是输出结果数据代码:

void printResult( int _arrDis[][MAX_VERTEX_COUNT], int _arrPath[][MAX_VERTEX_COUNT], int _nVertexCount ){std::cout << "Origin -> Dest   Distance    Path" << std::endl;for ( int i = 0; i < _nVertexCount; ++i ){for ( int j = 0; j < _nVertexCount; ++j ){if ( i != j )   // 节点不是自身{std::cout << i+1 << " -> " << j+1 << "\t\t";if ( INFINITE == _arrDis[i][j] )    // i -> j 不存在路径{std::cout << "INFINITE" << "\t\t";}else{std::cout << _arrDis[i][j] << "\t\t";// 由于我们查询最短路径是从后往前插,因此我们把查询得到的节点// 压入栈中,最后弹出以顺序输出结果。std::stack<int> stackVertices;int k = j;do{k = _arrPath[i][k];stackVertices.push( k );} while ( k != i );//std::cout << stackVertices.top()+1;stackVertices.pop();unsigned int nLength = stackVertices.size();for ( unsigned int nIndex = 0; nIndex < nLength; ++nIndex ){std::cout << " -> " << stackVertices.top()+1;stackVertices.pop();}std::cout << " -> " << j+1 << std::endl;}}}}}

好了,是时候测试了,我们用的图如下:

测试代码如下:

int main( void ){Graph myGraph;readGraphData( &myGraph );//int arrDis[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];int arrPath[MAX_VERTEX_COUNT][MAX_VERTEX_COUNT];// 先初始化arrDisfor ( int i = 0; i < myGraph.nVertexCount; ++i ){for ( int j = 0; j < myGraph.nVertexCount; ++j ){arrDis[i][j] = myGraph.arrArcs[i][j];}}floyd( arrDis, arrPath, myGraph.nVertexCount );//printResult( arrDis, arrPath, myGraph.nVertexCount );//system( "pause" );return 0;}

如图:

相关文章:

Floyd算法

正如我们所知道的&#xff0c;Floyd算法用于求最短路径。Floyd算法可以说是Warshall算法的扩展&#xff0c;三个for循环就可以解决问题&#xff0c;所以它的时间复杂度为O(n^3)。 Floyd算法的基本思想如下&#xff1a;从任意节点A到任意节点B的最短路径不外乎2种可能&#xff…...

SpringBoot究竟应该如何学习?

如果你有Spring的基础&#xff0c;学习Spring Boot就很简单了。 首先要知道Spring Boot是建立在Spring框架之上的&#xff0c;它旨在简化和加速Java应用程序的开发过程。 Spring Boot的目标是简化Spring应用程序的配置和开发&#xff0c;通过提供自动配置、快速开发和零配置的…...

为什么很多人认为ChatGPT最好的替代工具是Claude?

ChatGPT引领着生成式AI聊天机器人领域&#xff0c;但Claude AI看起来是一个有力的竞争者。 前段时间&#xff0c;ChatGPT的强劲竞争对手Claude2面世。当时很多人认为它可能会取代ChatGPT&#xff0c;在体验过一段时间之后&#xff0c;深以为然。原因如下&#xff1a; 更强大的…...

学习Vue:简介和优势

什么是 Vue.js&#xff1f; Vue.js 是一个用于构建用户界面的渐进式 JavaScript 框架。它专注于视图层&#xff0c;并且可以轻松地集成到现有的项目中。Vue.js 的设计理念是渐进式&#xff0c;这意味着您可以根据项目的需要逐步引入 Vue.js&#xff0c;从而更好地控制应用的复…...

***is not a commit and a branch ‘***‘ cannot be created from it 报错

git执行如下代码 git checkout -b daily/1.0.0 origin/daily/1.0.0遇到报错 fatal: ‘origin/daily/1.0.27’ is not a commit and a branch ‘daily/1.0.27’ cannot be created from it 解决办法: git fetch --all原因: 报错说is not a commit而不是说branch doesn’t exis…...

QT信号槽连接方式

1.QT信号槽主要分两个连接方式&#xff0c;手动和自动&#xff1a; 1.1 使用 connect() 函数手动连接信号和槽&#xff1a; QObject::connect(sender, SIGNAL(signal()), receiver, SLOT(slot())); 自动&#xff1a; 1.2 使用 lambda 表达式连接信号和槽&#xff1a; connect(s…...

【yml文件的解释】

目录 一、yml的简介二、手写yml文件进行配置三、使用yaml格式导出生成模板四、deployment.yaml文件详解五、Pod yaml文件详解六、Service yaml文件详解 一、yml的简介 Kubernetes 支持 YAML 和 JSON 格式管理资源对象 JSON 格式&#xff1a;主要用于 api 接口之间消息的传递 Y…...

ChatGPT or BingChat

你相信我们对大模型也存在「迷信权威」吗&#xff1f; ChatGPT 的 GPT-4 名声在外&#xff0c;我们就不自觉地更相信它&#xff0c;优先使用它。但我用 ChatALL 比较 AI 大模型们这么久&#xff0c;得到的结论是&#xff1a; ChatGPT GPT-4 在大多数情况下确实是最强&#xf…...

QT 使用第三方库QtXlsx操作Excel表

1.简介 一直以来&#xff0c;都想学习一下C/C如何操作excel表&#xff0c;在网上调研了一下&#xff0c;觉得使用C/C去操作很麻烦&#xff0c;遂转向QT这边&#xff1b;QT有一个自带的类QAxObject&#xff0c;可以使用他去操作&#xff0c;但随着了解的深入&#xff0c;觉得他…...

警惕网络个人技术人员:隐藏代码风险的启示

在当今数字化时代&#xff0c;我们对网络上个人技术人员的需求日益增加&#xff0c;这使得技术服务成为一项不可或缺的资源。然而&#xff0c;我最近的经历却引发了我对这种服务可靠性的怀疑&#xff0c;特别是当这些个人技术人员没有正式公司背景&#xff0c;缺乏可信的运营保…...

VBA 学习笔记1 对象以及属性

目录 1 取得VBA对象1.1 取得工作簿对象1.2 取得工作表对象1.3 取得单元格对象1.4 取得对象的属性1.5 文档的方法1 进入vba 界面 方式之一&#xff1a; 快捷键&#xff1a;ALTERF11 运行方式之一&#xff1a; 进入vba界面&#xff0c;点击绿色三角符号 1 取得VBA对象 1.1 取得…...

netty核心组件以及实现原理

Netty核心组件 网络通信层&#xff1a;这一层有三个核心组件&#xff1a;Bootstrap、ServerBootStrap和Channel。Bootstrap负责客户端的启动&#xff0c;并用来链接远程Netty Server&#xff1b;ServerBootStrap负责服务端监听&#xff0c;用来监听指定端口&#xff1b;Channe…...

如何正确下载tomcat???

亲爱的小伙伴&#xff0c;千万别再去找下网站下载啦&#xff0c;这样詪容易携带病毒。 我们去官方网址下载。 Apache Tomcat - Welcome! 最后下载解压即可。。。...

mybatis-plus 根据指定字段 批量 删除/修改

mybatis-plus 提供了根据id批量更新和修改的方法,这个大家都不陌生 但是当表没有id的时候怎么办 方案一: 手写SQL方案二: 手动获取SqlSessionTemplate 就是把mybatis plus 干的事自己干了方案三 : 重写 executeBatch 方法结论: mybatis-plus 提供了根据id批量更新和修改的方法,…...

MQTT宝典

文章目录 1.介绍2.发布和订阅3.MQTT 数据包结构4.Demo5.EMQX 1.介绍 什么是MQTT协议 MQTT&#xff08;消息队列遥测传输协议&#xff09;&#xff0c;是一种基于发布/订阅&#xff08;publish/subscribe&#xff09;模式的“轻量级”通讯协议&#xff0c;该协议构建于TCP/IP协…...

【前端】CSS水平居中的6种方法

文章目录 flex绝对定位margin:auto绝对定位margin:负值定位transformtext-align: center;margin: 0 auto;思维导图 后文&#xff1a;【前端】CSS垂直居中的7种方法_karshey的博客-CSDN博客 左右两边间隔相等的居中 flex display: flex;justify-content: center; <div clas…...

nginx如何获取真实的ip

我这里使用是springboot项目&#xff0c;使用nginx做代理&#xff0c;但header里面的参数没有将ip带过来&#xff0c;所有需要配置nginx将ip带过来。 nginx.conf文件 server {listen 80;listen 443 ssl;server_name xxx.xxx.com;ssl_certificate /web/project/ai…...

kotlin + LiveData 测试

viewModel测试&#xff1a;https://developer.android.com/codelabs/basic-android-kotlin-compose-test-viewmodel#3 androidTestImplementation "org.jetbrains.kotlin:kotlin-test:1.9.0"androidTestImplementation org.jetbrains.kotlinx:kotlinx-coroutines-tes…...

【dnf5文档】新一代RedHat自动化包管理器

前言 HI,CSDN的码友们&#xff0c;距离上一次我发文章已经过去了半年的时间&#xff0c;现在我又来介绍自己新发现和探究的开源技术了。计算机的发展总是飞速的&#xff0c;当我在写这篇文章的时候&#xff0c;Fedora rawhide已经进入了40版本、默认采用的自动化包管理器为dnf…...

数据可视化工具的三大类报表制作流程分享

电脑&#xff08;pc&#xff09;、移动、大屏三大类型的BI数据可视化报表制作步骤基本相同&#xff0c;差别就在于尺寸调整和具体的报表布局。这对于采用点击、拖拉拽方式来制作报表的奥威BI数据可视化工具来说就显得特别简单。接下来&#xff0c;我们就一起看看不这三大类型的…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

Qt Widget类解析与代码注释

#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码&#xff0c;写上注释 当然可以&#xff01;这段代码是 Qt …...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来&#xff0c;实在找不到&#xff0c;希望有大佬教一下我。 还有就会议时间&#xff0c;我感觉不是图片时间&#xff0c;因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

关于 WASM:1. WASM 基础原理

一、WASM 简介 1.1 WebAssembly 是什么&#xff1f; WebAssembly&#xff08;WASM&#xff09; 是一种能在现代浏览器中高效运行的二进制指令格式&#xff0c;它不是传统的编程语言&#xff0c;而是一种 低级字节码格式&#xff0c;可由高级语言&#xff08;如 C、C、Rust&am…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人作为一款创新的AI硬件产品&#xff0c;通过将智能手机转变为具有情感交互能力的桌面机器人&#xff0c;展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家&#xff0c;我将全面解析LOOI的技术实现架构&#xff0c;特别是其手势识别、物体识别和环境…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

flow_controllers

关键点&#xff1a; 流控制器类型&#xff1a; 同步&#xff08;Sync&#xff09;&#xff1a;发布操作会阻塞&#xff0c;直到数据被确认发送。异步&#xff08;Async&#xff09;&#xff1a;发布操作非阻塞&#xff0c;数据发送由后台线程处理。纯同步&#xff08;PureSync…...