【数据结构】堆的实现,堆排序以及TOP-K问题
目录
1.堆的概念及结构
2.堆的实现
2.1初始化堆
2.2销毁堆
2.3取堆顶元素
2.4返回堆的大小
2.5判断是否为空
2.6打印堆
2.7插入元素
2.8堆的向上调整
2.9弹出元素
2.10堆的向下调整
3. 建堆时间复杂度
4. 堆的应用
4.1 堆排序
4.2 TOP-K问题
1.堆的概念及结构
堆是一种数据结构,它是由一组元素组成的,并按照一定的规则进行排序和访问。堆可以看作是一个完全二叉树,其中每个节点的值都大于或等于其子节点(对于最大堆)或小于或等于其子节点(对于最小堆)。堆通常用来解决具有优先级的问题,例如找到最大或最小的元素。
堆的性质:
- 堆中某个节点的值总是不大于或不小于其父节点的值;
- 堆总是一棵完全二叉树。
2.堆的实现
这里写的是小根堆,大根堆可以在小根堆的基础上稍作修改。下面是堆要实现的一些接口函数:
//初始化堆
void HeapInit(HP* php);
//销毁堆
void HeapDestory(HP* php);
//插入元素
void HeapPush(HP* php, HPDataType x);
//堆向上调整算法
void AdjustUp(HP* php, int x);
//弹出堆顶元素
void HeapPop(HP* php);
//堆向下调整算法
void AdjustDwon(HPDataType* a, int size, int x);
//取堆顶元素
HPDataType HeapTop(HP* php);
//返回堆的大小
int HeapSize(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);
//打印堆
void HeapPrint(HP* php);
堆的定义:
typedef int HPDataType;
typedef struct Heap
{HPDataType* a;int size;int capacity;
}HP;
对于一些简单的接口函数,我们就不详细介绍了,在堆中,我们主要要学习的是向上调整算法和向下调整算法。这两个函数分别在插入元素和弹出元素的时候会调用。
2.1初始化堆
void HeapInit(HP* php)
{assert(php);php->a = NULL;php->size = php->capacity = 0;
}
2.2销毁堆
void HeapDestory(HP* php)
{assert(php);free(php->a);php->a = NULL;php->size = php->capacity = 0;
}
2.3取堆顶元素
HPDataType HeapTop(HP* php)
{assert(php);return php->a[0];
}
2.4返回堆的大小
int HeapSize(HP* php)
{assert(php);return php->size;
}
2.5判断是否为空
bool HeapEmpty(HP* php)
{assert(php);return php->size == 0;
}
2.6打印堆
void HeapPrint(HP* php)
{assert(php);for (int i = 0; i < php->size; i++){printf("%d ", php->a[i]);}printf("\n");
}
2.7插入元素
向堆中插入一个元素,我们可以将这个元素插入到堆的尾部,因为堆的实际存储结构是一个数组,我们可以将元素放到数组末尾,但如果仅仅是插入到数组末尾的话,会将堆的结构给破环,我们还需要调用一个向上调整的函数,来调整各个节点间的大小关系。
在插入之前,需要判断堆的容量是否足够,如果堆的容量已满,需要扩容,这里每次扩容实在原来的基础上扩2倍。
void HeapPush(HP* php, HPDataType x)
{assert(php);if (php->size == php->capacity){int newCapacity = php->capacity == 0 ? 4 : php->capacity * 2;HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newCapacity);if (tmp == NULL){printf("realloc fail\n");exit(-1);}php->a = tmp;php->capacity = newCapacity;}php->a[php->size] = x;AdjustUp(php->a, php->size);//向上调整php->size++;
}
2.8堆的向上调整
在上面插入元素的过程中,我们已经使用了堆的向上调整算法,下面,我们来看看怎么实现这个向上调整算法吧:
先插入一个10到数组的尾上,再进行向上调整算法,直到满足堆。
图示过程:
void AdjustUp(HPDataType* a, int x)
{int child = x;int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);}else{break;}child = parent;parent = (child - 1) / 2;}
}
代码分析:
- 初始化变量child为节点x,parent为其父节点的索引,也即 (child - 1) / 2。
- 进入一个循环,该循环会一直执行直到节点x上浮到合适的位置或者到达堆顶。
- 在循环中,判断节点x的值是否小于其父节点的值,若成立则交换两者的值。
- 若节点x的值不小于父节点的值,则跳出循环,因为此时堆的性质已满足。
- 更新child和parent的值,将child更新为parent,parent更新为其父节点的索引,也即 (child - 1) / 2。
- 重复步骤3-5,直到节点x的值大于或等于其父节点的值,或者到达堆顶。
2.9弹出元素
弹出元素就是将堆顶的元素给删除,但我们不能直接进行删除,这样会将堆的结构给破坏,正确的方法是先将堆顶的元素和最后的元素进行交换,这样保证的首元素的左子树和右子树依然是堆的形态,然后将size自减,最后调用一个堆的向下调整函数。
void HeapPop(HP* php)
{assert(php);Swap(&php->a[0], &php->a[php->size-1]);php->size--;AdjustDwon(php->a, php->size, 0);
}
2.10堆的向下调整
堆的向下调整:每次将父节点和左右孩子的较小值进行交换(小根堆),不断地更新父节点的孩子节点的值。
void AdjustDwon(HPDataType* a, int size, int x)
{int parent = x;int child = parent * 2 + 1;while (child < size){if (child + 1 < size && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);}else{break;}parent = child;child = parent * 2 + 1;}
}
- 初始化变量parent为节点x,child为其左子节点的索引,也即 parent * 2 + 1。
- 进入一个循环,该循环会一直执行直到节点x下沉到合适的位置或者没有子节点。
- 在循环中,首先判断节点x是否有右子节点,并且右子节点的值小于左子节点的值,如果成立则将child更新为右子节点的索引。
- 接着判断节点x的值是否大于其子节点的值,若成立则交换两者的值。
- 若节点x的值不大于子节点的值,则跳出循环,因为此时堆的性质已满足。
- 更新parent和child的值,将parent更新为child,child更新为parent的左子节点的索引,也即 parent * 2 + 1。
- 重复步骤3-6,直到节点x的值小于或等于其子节点的值,或者没有子节点。
3. 建堆时间复杂度
因为堆是完全二叉树,而满二叉树也是完全二叉树,此处为了简化使用满二叉树来证明(时间复杂度本来看的就是近似值,多几个节点不影响最终结果):
向下调整:
因此:向下调整建堆的时间复杂度为O(N)。
向上调整:
因此:向上调整建堆的时间复杂度为N*logN;
4. 堆的应用
4.1 堆排序
利用堆排序数组并打印出来:
void testHeapSort()
{HP hp;HeapInit(&hp);int a[] = { 1,4,7,5,10,2,8,9,3,6 };for (int i = 0; i < sizeof(a) / sizeof(a[0]); i++){HeapPush(&hp, a[i]);}while (!HeapEmpty(&hp)){printf("%d ", HeapTop(&hp));HeapPop(&hp);}//释放内存HeapDestory(&hp);
}
int main()
{testHeapSort();return 0;
}
输出结果:
但是,使用这种方法是不是有点复杂了呢?我们要进行堆排序,还得先写一个堆的数据结构,当然并不是这样的,我们可以将代码进行修改,在原数组上进行建堆:
思路:
对于在原数组上进行建堆,我们可以使用两种方式:
第一种是向上建堆,向上建堆的时间复杂度是 O(N*logN),我们不推荐使用这种方法。
第二种是向下建堆,它的时间复杂度是O(N),它的效率比向上建堆要高。我们推荐使用向下建堆。
还有一个比较让人难以理解的一点是:如果要进行升序,我们要建大堆,如果要进行降序,我们要建小堆。
void swap(int* x, int* y)
{int tmp = *x;*x = *y;*y = tmp;
}
void HeapSort(int* a, int n)
{//从倒数第一个非叶子节点开始调for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDwon(a, n, i);//向下调整建堆}int end = n - 1;while (end > 0){swap(&a[0], &a[end]);AdjustDwon(a, end, 0);//向下调整[0,end]的元素--end;}
}
int main()
{int a[] = { 1,4,7,5,10,2,8,9,3,6 };int n = sizeof(a) / sizeof(a[0]);HeapSort(a,n);//堆排序for (int i = 0; i < n; i++){printf("%d ", a[i]);}return 0;
}
4.2 TOP-K问题
TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。
比如:专业前10名、世界500强、富豪榜、游戏中前100的活跃玩家等。
对于Top-K问题,能想到的最简单直接的方式就是排序,但是:如果数据量非常大,排序就不太可取了(可能 数据都不能一下子全部加载到内存中)。最佳的方式就是用堆来解决,基本思路如下:
1. 用数据集合中前K个元素来建堆
- 前k个最大的元素,则建小堆
- 前k个最小的元素,则建大堆
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素
将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。
实际应用:在10000000个随机数中找出前十个最大的数字
void AdjustDwon(int* a, int size, int x)
{int parent = x;int child = parent * 2 + 1;while (child < size){if (child + 1 < size && a[child + 1] < a[child]){child++;}if (a[child] < a[parent]){int tmp = a[child];a[child] = a[parent];a[parent] = tmp;}else{break;}parent = child;child = parent * 2 + 1;}
}void PrintTopK(int* a, int n, int k)
{int* KMaxHeap = (int*)malloc(sizeof(int) * k);assert(KMaxHeap);for (int i = 0; i < k; i++){KMaxHeap[i] = a[i];}//建小根堆for (int i = (k - 1 - 1) / 2; i >= 0; i--){AdjustDwon(KMaxHeap, k, i);}//依次比较a数组中剩余的元素for (int i = k; i < n; i++){if (a[i] > KMaxHeap[0]){KMaxHeap[0] = a[i];}AdjustDwon(KMaxHeap, k, 0);}//打印for (int i = 0; i < k; i++){printf("%d ", KMaxHeap[i]);}
}
void testTopK()
{srand(time(0));int n = 10000000;int* a = (int*)malloc(sizeof(int) * n);for (int i = 0; i < n; i++){a[i] = rand() % n;//a[i]的范围[1,n]}//手动设定10个最大的数a[2] = n + 3;a[122] = n + 5;a[1233] = n + 1;a[12333] = n + 2;a[1322] = n + 8;a[2312] = n + 6;a[54612] = n + 7;a[546612] = n + 9;a[5612] = n + 10;a[46612] = n + 4;PrintTopK(a, n, 10);
}
int main()
{testTopK();return 0;
}
相关文章:

【数据结构】堆的实现,堆排序以及TOP-K问题
目录 1.堆的概念及结构 2.堆的实现 2.1初始化堆 2.2销毁堆 2.3取堆顶元素 2.4返回堆的大小 2.5判断是否为空 2.6打印堆 2.7插入元素 2.8堆的向上调整 2.9弹出元素 2.10堆的向下调整 3. 建堆时间复杂度 4. 堆的应用 4.1 堆排序 4.2 TOP-K问题 1.堆的概念及结构 …...

释放马氏距离的力量:用 Python 探索多元数据分析
一、说明 马哈拉诺比斯距离(Mahalanobis Distance)是一种测量两个概率分布之间距离的方法。它是基于样本协方差矩阵的函数,用于评估两个向量之间的相似程度。Mahalanobis Distance考虑了数据集中各个特征之间的协方差,因此比欧氏距…...

【不限于联想Y9000P电脑关盖再打开时黑屏的解决办法】
不限于联想Y9000P电脑关盖再打开时黑屏的解决办法 问题的前言问题的出现问题拟解决 问题的前言 事情发生在昨天,更新了Win11系统后: 最惹人注目的三处地方就是: 1.可以查看时间的秒数了; 2.右键展示的内容变窄了; 3.按…...

策略模式实战应用
场景 假设做了个卖课网站,会员等级分为月vip、年vip、终生vip,每个等级买课的优惠力度不一样,传统的写法肯定是一堆的 if-else,现在使用策略模式写出代码实现 代码实现 策略模式的核心思想就是对扩展开放,对修改关闭…...
JAVA集合-Map
// 【Map】:双列集合,键值对形式存储,映射关系(kay,value) // 实现:HashMap // 子接口:SortedMap Map的子接口 // 实现类:TreeMap // HashMap // 1。可以插入null // …...

利用Simulink Test进行模型单元测试 - 1
1.搭建用于测试的简单模型 随手搭建了一个demo模型MilTestModel,模型中不带参数 2.创建测试框架 1.模型空白处右击 测试框架 > 为‘MilTestModel’创建 菜单 2.在创建测试框架对话框中,点击OK,对应的测试框架MilTestMode_Harness1就自动…...
深入探讨代理技术:保障网络安全与高效爬虫
1. Socks5代理与IP代理的区别与应用 Socks5代理和IP代理是代理技术中的两个重要方面,它们有着不同的特点和应用场景。Socks5代理是一种协议,支持TCP和UDP流量传输,适用于需要实时数据传输的场景,例如在线游戏或实时通信应用。而I…...

HDMI接口的PCB布局布线要求
高清多媒体接口(High Definition Multimedia Interface),简称:HDMI,是一种全数字化视频和声音发送接口,可以发送未压缩的音频及视频信号。随着技术的不断提升,HDMI的传输速率也不断的提升&#…...
Linux tar包安装 Prometheus 和 Grafana(知识点:systemd Unit/重定向)
0. 介绍 用tar包的方式安装 Prometheus 和 Grafana Prometheus:开源的监控方案Grafana:将Prometheus的数据可视化平台 Prometheus已经有了查询功能为什么还需要grafana呢?Prometheus基于promQL这一SQL方言,有一定门槛!Grafana基于浏览器的操作与可视化图表大大降低了理解难…...

【Vue框架】用户和请求
前言 在上一篇 【Vue框架】Vuex状态管理 针对Vuex状态管理以getters.js进行说明,没有对其中state引入的对象进行详细介绍,因为整体都比较简单,也就不对全部做详细介绍了;但其中的user.js涉及到获取用户的信息、前后端请求的token…...

NGINX组件(rewrite)
一、location匹配的规则和优先级(*) URI:统一资源标识符,是一种字符串标识,用于标识抽象的或者是物理资源;如:文件、图片、视频等 nginx中的URI匹配的是:网址”/“后的路径 如&…...

网页显示摄像头数据的方法---基于web video server
1. 背景: 在ros系统中有发布摄像头的相关驱动rgb数据,需求端需要将rgb数据可以直接在网页上去显示。 问题解决: web_video_server功能包,相关链接: web_video_server - ROS Wiki 2. 下载,安装和编译&a…...

SIFT 算法 | 如何在 Python 中使用 SIFT 进行图像匹配
介绍 人类通过记忆和理解来识别物体、人和图像。你看到某件事的次数越多,你就越容易记住它。此外,每当一个图像在你的脑海中弹出时,它就会将该项目或图像与一堆相关的图像或事物联系起来。如果我告诉你我们可以使用一种称为 SIFT 算法的技术来教机器做同样的事情呢? 尽管…...

K8S系列四:服务管理
写在前面 本文是K8S系列第四篇,主要面向对k8s新手同学。阅读本文需要读者对k8s的基本概念,比如Pod、Deployment、Service、Namespace等基础概念有所了解,尚且不了解的同学推荐先阅读本系列的第一篇文章《K8S系列一:概念入门》[1]…...

冠达管理:融券卖出交易规则?
融券卖出买卖是指投资者在没有实际持有某只股票的情况下,经过借入该股票并卖出来取得赢利的一种股票买卖方式。融券卖出买卖规矩针对不同市场、不同证券公司之间可能会存在一些差异,但基本的规矩包含如下几个方面。 一、融资融券的资历要求 在进行融券卖…...

图像变形之移动最小二乘算法(MLS)
基本原理 基于移动最小二乘的图像变形是通过一组源控制点和目标控制点来控制变形,对于每一个待求变形后位置的点而言,根据预设的形变类型(如仿射变换、相似变换、刚性变换)求解一个最小二乘优化目标函数估计一个局部的坐标变换矩阵…...
搭建一个功能齐全的网站
搭建一个功能齐全的网站,需要准备和掌握的一些关键技术和功能可概括如下: 前端技术: HTML/CSS - 网页内容结构和样式JavaScript - 实现网页交互功能前端框架(Vue、React等) - 更高效开发交互页面响应式设计 - 网站适配移动端 后端技术: 服务器(Linux、Nginx等) - 提供网站访…...
Java-jar和war包的区别
jar包和war包的区别: 1、war是一个web模块,其中需要包括WEB-INF,是可以直接运行的WEB模块;jar一般只是包括一些class文件,在声明了Main_class之后是可以用java命令运行的。 2、war包是做好一个web应用后,通…...

分类预测 | MATLAB实现CNN-BiGRU-Attention多输入分类预测
分类预测 | MATLAB实现CNN-BiGRU-Attention多输入单输出分类预测 目录 分类预测 | MATLAB实现CNN-BiGRU-Attention多输入单输出分类预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现CNN-BiGRU-Attention多特征分类预测,卷积双向门控循环…...

C#小轮子:Visual Studio自动编译Sass文件
文章目录 前言插件安装插件使用compilerconfig.jsonsass输入和css输出(自动生成)默认配置(我不懂就不去动他了) 解决Blazor热重载Bug 前言 我们知道css文件用起来太麻烦,如果样式一多,嵌套起来用css样式就…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

FFmpeg:Windows系统小白安装及其使用
一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】,注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录(即exe所在文件夹)加入系统变量…...

沙箱虚拟化技术虚拟机容器之间的关系详解
问题 沙箱、虚拟化、容器三者分开一一介绍的话我知道他们各自都是什么东西,但是如果把三者放在一起,它们之间到底什么关系?又有什么联系呢?我不是很明白!!! 就比如说: 沙箱&#…...