【图像分类】理论篇(4)图像增强opencv实现
随机旋转
随机旋转是一种图像增强技术,它通过将图像以随机角度进行旋转来增加数据的多样性,从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用,可以使模型更好地适应各种角度的输入。
原图像:

旋转后的图像:

代码实现:
import cv2import numpy as npdef random_rotate(image, max_angle):angle = np.random.uniform(-max_angle, max_angle)height, width = image.shape[:2]rotation_matrix = cv2.getRotationMatrix2D((width / 2, height / 2), angle, 1)rotated_image = cv2.warpAffine(image, rotation_matrix, (width, height))return rotated_image# 读取图像
image = cv2.imread('input.jpg')
image=cv2.resize(image,(1024,800))
# 随机旋转图像
max_rotation_angle = 30 # 最大旋转角度
rotated_image = random_rotate(image, max_rotation_angle)# 显示原始图像和旋转后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Rotated Image', rotated_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
随机裁剪
随机裁剪是一种常见的数据增强技术,用于增加训练数据的多样性,特别是在处理不同尺寸的图像数据时。
原图像:

随机裁剪后的图像:

代码实现:
import cv2
import numpy as np
def random_crop(image, crop_size):height, width = image.shape[:2]crop_height, crop_width = crop_sizeif crop_width >= width or crop_height >= height:raise ValueError("Crop size should be smaller than image size")x = np.random.randint(0, width - crop_width + 1)y = np.random.randint(0, height - crop_height + 1)cropped_image = image[y:y+crop_height, x:x+crop_width]return cropped_image# 读取图像
image = cv2.imread('input.jpg')
image=cv2.resize(image,(1024,800))
# 随机裁剪到固定大小
crop_size = (200, 200) # 裁剪尺寸
cropped_image = random_crop(image, crop_size)# 显示原始图像和裁剪后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Cropped Image', cropped_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色增强:
- 颜色平衡调整:调整图像中不同颜色通道的增益,以改变图像的颜色平衡。
- 颜色增强:通过增加或减少颜色通道的值,增强图像的色彩鲜艳度。
原图像:

亮度调整之后的图像:
代码实现:
def enhance_color(image, alpha, beta):enhanced_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)return enhanced_imageimage = cv2.imread('input.jpg')
color_enhanced_image = enhance_color(image, 1.2, 20)
亮度和对比度调整:
- 亮度调整:改变图像的亮度水平,使图像变得更亮或更暗。
- 对比度调整:调整图像中像素值的范围,以扩展或缩小亮度差异,使图像更具视觉对比度。
原图:

亮度、对比度调整后的图像:

代码实现:
import cv2def adjust_brightness_contrast(image, alpha, beta):adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)return adjusted_imageimage = cv2.imread('input.jpg')
brightened_image = adjust_brightness_contrast(image, 1.2, 20)
图像平滑与锐化:
- 图像平滑:应用模糊滤波器来减少图像中的噪声,同时也可能使图像变得模糊。
- 图像锐化:通过增强图像中的边缘和细节,使图像看起来更清晰。
原图:
平滑后的图像:
锐化后的图像:
代码实现:
def apply_image_smoothing(image):smoothed_image = cv2.GaussianBlur(image, (5, 5), 0)return smoothed_imagedef apply_image_sharpening(image):kernel = np.array([[-1, -1, -1],[-1, 9, -1],[-1, -1, -1]])sharpened_image = cv2.filter2D(image, -1, kernel)return sharpened_imageimage = cv2.imread('input.jpg')
smoothed_image = apply_image_smoothing(image)
sharpened_image = apply_image_sharpening(image)
相关文章:
【图像分类】理论篇(4)图像增强opencv实现
随机旋转 随机旋转是一种图像增强技术,它通过将图像以随机角度进行旋转来增加数据的多样性,从而帮助改善模型的鲁棒性和泛化能力。这在训练深度学习模型时尤其有用,可以使模型更好地适应各种角度的输入。 原图像: 旋转后的图像&…...
Centos下的tcpdump抓包用法
先查一下是否安装, 无的话装一下 (版本低的用yum install) : rpm -qa tcpdump dnf install tcpdump 1. 列出能抓包的网卡: tcpdump -D | --list-interfaces 2. 在eth0网卡上抓来源为10.1.1.1 的包, 只抓一个包 (-n这里是不解析DNS) : tcpdump -i eth0 -n src 10.1.1.1 -…...
自然语言处理从入门到应用——LangChain:记忆(Memory)-[记忆的存储与应用]
分类目录:《自然语言处理从入门到应用》总目录 使用SQLite存储的实体记忆 我们将创建一个简单的对话链,该链使用ConversationEntityMemory,并使用SqliteEntityStore作为后端存储。使用EntitySqliteStore作为记忆entity_store属性上的参数&am…...
微服务与Nacos概述-5
引入OpenFeign 添加依赖: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency><groupId>com.alibaba.cloud</groupId>…...
第九章 动态规划part08(代码随想录)
139.单词拆分 1. 确定dp[i][j] dp数组以及下标的含义一维dp数组的递推公式 dp[i] : 字符串长度为i的话,dp[i]为true,表示可以单词能被在字典中出现的单词组成。 dp[s.size()] true; 说明可以利用字典中出现的单词拼接出 s 。 2. 一维dp数组的递推公式…...
智能家居(1)---工厂模式实现灯光控制(继电器组)以及火灾报警模组的封装
采用工厂模式以面向对象的方式来封装各种设备模块,方便整合项目以及后期的维护和扩展 mainPro.c(主函数) #include <stdio.h> #include "controlDevice.h"struct Devices *pdeviceHead NULL; //设备工厂链…...
kubernetes的存储卷使用
目录 一、为什么使用存储卷 二、emptyDir存储卷 1.概念 2.创建Pod emptyDir 3. 验证emptyDir存储卷 三、hostPath存储卷 1.概念 2.创建Pod hostPath 3.验证hostPath存储卷 三、nfs共享存储卷 1.概念 2.安装nfs,配置nfs服务 3.创建Pod 4.验证nfs存储卷 一、…...
centos 之安装 openssl 1.1.1报错
源码make时报错,可能是系统的perl的版本太低问题。 [rootlocalhost ~]# cpan -a | grep Test::More Test::More 0.92 1.302171 EXODIST/Test-Simple-1.302171.tar.gz [rootlocalhost ~]# cpan -a | grep Text::Template [rootlocalhost ~]# …...
matlab使用教程(16)—图论中图的定义与修改
1.修改现有图的节点和边 此示例演示如何使用 addedge 、 rmedge 、 addnode 、 rmnode 、 findedge 、 findnode 及 subgraph 函数访问和修改 graph 或 digraph 对象中的节点和/或边。 1.1 添加节点 创建一个包含四个节点和四条边的图。s 和 t 中的对应元素用于指定每条…...
【C++面向对象】--- 继承 的奥秘(下篇)
个人主页:平行线也会相交💪 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 平行线也会相交 原创 收录于专栏【C之路】💌 本专栏旨在记录C的学习路线,望对大家有所帮助🙇 希望我们一起努力、成长&…...
Android 面试笔记整理-Binder机制
作者:浪人笔记 面试可能会问到的问题 从IPC的方式问到Binder的优势为什么zygote跟其他服务进程的通讯不使用BinderBinder线程池和Binder机制 等等这些问题都是基于你对Binder的理解还有对其他IPC通讯的理解 IPC方式有多少种 传统的IPC方式有Socket、共享内存、管道…...
编程小白的自学笔记十三(python办公自动化读写文件)
系列文章目录 编程小白的自学笔记十二(python爬虫入门四Selenium的使用实例二) 编程小白的自学笔记十一(python爬虫入门三Selenium的使用实例详解) 编程小白的自学笔记十(python爬虫入门二实例代码详解)…...
【Mariadb高可用MHA】
目录 一、概述 1.概念 2.组成 3.特点 4.工作原理 二、案例介绍 1.192.168.42.3 2.192.168.42.4 3.192.168.42.5 4.192.168.42.6 三、实际构建MHA 1.ssh免密登录 1.1 所有节点配置hosts 1.2 192.168.42.3 1.3 192.168.42.4 1.4 192.168.42.5 1.5 192.168.42.6 …...
网络五层协议
应用层(http,https),传输层(udp,tcp),网络层(ip),数据链路层,物理层 什么是http?http 与https 的区别_日晞的博客-CSDN博客 TCP 与UDP 区别_互联网业务udp小包传输_日晞的博客-CSDN博客...
零售行业供应链管理核心KPI指标(一) – 能力、速度、效率和成本
有关零售行业供应链管理KPI指标的综合性分享,涉及到供应链能力、速度、效率和成本总共九大指标,是一个大框架,比较核心也比较综合。 衡量消费品零售企业供应链管理效率和水平的核心KPI通常有哪些? 图片来源-派可数据(…...
MySQL面试题二
1、关系型和非关系型数据库的区别? 关系型数据库的优点 容易理解,因为它采用了关系模型来组织数据。 可以保持数据的一致性。 数据更新的开销比较小。 支持复杂查询(带 where 子句的查询) 非关系型数据库(NOSQL&#x…...
码银送书第五期《互联网广告系统:架构、算法与智能化》
广告平台的建设和完善是一项长期工程。例如,谷歌早于2003年通过收购Applied Semantics开展Google AdSense 项目,而直到20年后的今天,谷歌展示广告平台仍在持续创新和提升。广告平台是负有营收责任的复杂在线平台,对其进行任何改动…...
分布式理论
CAP和BASE CAP C一致性(Consistency) 在分布式环境下,一致性是指数据在多个副本之间能否保持一致性的特征。在一致性的需求下,当一个系统在数据一致的状态下执行更新操作后,应该保证系统的数据仍然处于一致性的状态…...
Excel设置某列或者某行不某行不可以编辑,只读属性
设置单元格只读的三种方式: 1、通过单元格只读按钮,设置为只为 设置行或者列的只读属性,可以设置整行或者整列只读 2、设置单元格编辑控件为标签控件(标签控件不可编辑) 3、通过锁定行,锁定行的修改。锁定的行与只读行的区别在于锁定的行不…...
vue elementui v-for 循环el-table-column 第一列数据变到最后一个
这个动态渲染table表格时发现el-table-column 第一列数据变到最后一个 序号被排到后面 代码 修改后 <el-table:data"tableData"tooltip-effect"dark"style"width: 100%"height"500"><template v-for"(item, index) i…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
条件运算符
C中的三目运算符(也称条件运算符,英文:ternary operator)是一种简洁的条件选择语句,语法如下: 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true,则整个表达式的结果为“表达式1”…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?
现有的 Redis 分布式锁库(如 Redisson)相比于开发者自己基于 Redis 命令(如 SETNX, EXPIRE, DEL)手动实现分布式锁,提供了巨大的便利性和健壮性。主要体现在以下几个方面: 原子性保证 (Atomicity)ÿ…...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
【堆垛策略】设计方法
堆垛策略的设计是积木堆叠系统的核心,直接影响堆叠的稳定性、效率和容错能力。以下是分层次的堆垛策略设计方法,涵盖基础规则、优化算法和容错机制: 1. 基础堆垛规则 (1) 物理稳定性优先 重心原则: 大尺寸/重量积木在下…...
