tensorflow 模型计算中,预测错误;权重参数加载
tensorflow 模型计算中,预测错误;权重参数加载
tensorflow 模型计算主要代码(正确代码)
linear1_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear1.weight"]))
linear1_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear1.bias"]))
linear1 = layers.Dense(units=400, activation=tf.nn.relu, kernel_initializer=linear1_kernel_initializer, use_bias=True, bias_initializer=linear1_bias_initializer, input_shape=(48,))
linear2_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear2.weight"]))
linear2_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear2.bias"]))
linear2 = layers.Dense(units=400, activation=tf.nn.relu, kernel_initializer=linear2_kernel_initializer, use_bias=True, bias_initializer=linear2_bias_initializer)
linear3_kernel_initializer = tf.constant_initializer(numpy.transpose(data["linear3.weight"]))
linear3_bias_initializer = tf.constant_initializer(numpy.transpose(data["linear3.bias"]))
linear3 = layers.Dense(units=2, activation=None, kernel_initializer=linear3_kernel_initializer, use_bias=True, bias_initializer=linear3_bias_initializer)
model = tf.keras.Sequential([linear1, linear2, linear3])input = numpy.ones((2, 48), dtype=float)
predict = model.predict(input)
print(predict[0:100,:])
原本权重参数采用以下代码
linear1_kernel_initializer = tf.constant_initializer(data["linear1.weight"])
linear1_bias_initializer = tf.constant_initializer((data["linear1.bias"])
但模型预测值与Matlab计算值有误。后经过测试定位到 layers.Dense 此处,然后创建 layers.Dense时设置use_bias=False参数,不去考虑偏差参数。改变初始权重参数方式:
input_size = 2
units_p = 3
data = numpy.array([1, 1, 2, 2, 2, 3], dtype=float)
linear1_kernel_initializer = tf.constant_initializer(data)
linear1 = layers.Dense(units=units_p, activation=None, kernel_initializer=linear1_kernel_initializer, use_bias=False, input_shape=(input_size,))
#变化data
data = numpy.array([1, 2, 3, 1, 2, 3], dtype=float)
#或者
data = numpy.array([1, 2, 3, 1, 2, 3], dtype=float).reshape(3, 2)
通过这样的方式,才发现 linear1_kernel_initializer = tf.constant_initializer(data)
中的 data
有问题,通过对预测结果的分析,发现 tf.constant_initializer()
会将传递过来的数据拉成一维,再根据 units
和 不同层
来变更数据矩阵大小,所以传入tf.constant_initializer()
的数据只要总大小是对的就可以传入,而不需要shape一致。
所以,既然之前的数据预测结果有误,那就是数据排列有误,将 data 数据进行矩阵转置 再 传入到tf.constant_initializer() 函数中
问题成功解决。
同时我想说明的是,pytorch
的torch.nn.Linear
是W x + b
而 tensorflow
的 layers.Dense
是 x W + b
。
tensorflow这种情况可以形象的表达为 流动的关系,input -> HL1 -> HL2 -> output
(HL1为隐藏层1)
input 卷上 W1 + b1 => HL1结果
HL1结果 卷上 W2 + b2 => HL2结果
HL2结果 卷上 W3 + b3 => outpu
相关文章:
tensorflow 模型计算中,预测错误;权重参数加载
tensorflow 模型计算中,预测错误;权重参数加载 tensorflow 模型计算主要代码(正确代码) linear1_kernel_initializer tf.constant_initializer(numpy.transpose(data["linear1.weight"])) linear1_bias_initializer …...

Jay17 2023.8.14日报 即 留校集训阶段性总结
8.14 打了moeCTF,还剩一题ak Web。 Jay17-集训结束阶段性总结: 集训产出: 自集训开始以来一个半月,最主要做的事情有三。 一是跟课程,复习学过的知识,学习新的知识;目前课程已大体听完&…...

【C语言】小游戏-扫雷(清屏+递归展开+标记)
大家好,我是深鱼~ 目录 一、游戏介绍 二、文件分装 三、代码实现步骤 1.制作简易游戏菜单 2. 初始化棋盘(11*11) 3.打印棋盘(9*9) 4.布置雷 5.计算(x,y)周围8个坐标的和 6.排查雷 <1>清屏后打印棋盘 <2>递归展开 <3>标记雷 四、完整代…...

云服务 Ubuntu 20.04 版本 使用 Nginx 部署静态网页
所需操作: 1.安装Nginx 2.修改配置文件 3.测试、重启 Nginx 4.内部修改防火墙 5.配置解析 6.测试是否部署成功 1.安装Nginx // 未使用 root 账号 apt-get update // 更新apt-get install nginx // 安装 nginx 1.1.测试是否安装没问题 在网页上输入云服务的公网…...
无后效性
动态规划的概念 在上例的多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义…...
Kubernetes系列-删除deployment和pod
通过deployment创建的pod直接执行delete是不会正常被删除的,因为deployment中设置了pod的数量,deployment会动态维护pod的数量,倘若pod数量少于约定数量,deployment会创建pod,直到pod数量达到约定数量才会停止。 如若…...
kotlin字符串方法
以下是一些常用的 String 方法示例: 1.获取字符串长度: val str "Hello, Kotlin" val length str.length2.字符串比较: val str1 "apple" val str2 "banana" val compareResult str1.compareTo(str2)3…...

ubuntu篇---配置FTP服务,本机和docker安装
ubuntu篇---配置FTP服务 一、本机安装1.1 安装FTP服务器软件1.2 配置FTP服务 二、docker安装(我用的这个)2.1 创建 目录2.2 启动脚本2.3 访问2.4 如何创建一个新的用户2.5 测试2.6 使用 一、本机安装 1.1 安装FTP服务器软件 ubuntu安装vsftp sudo apt…...

SpringBoot中properties、yml、yaml的优先级
原理 配置优先级低的会先加载然后会被配置优先级高的覆盖 验证 创建SpringBoot项目(网址) 在resource目录下创建application.properties、application.yml、application.yaml文件 运行 结论 优先级顺序: properties>yml>yaml...

SHELL 基础 SHELL注释 及 执行SHELL脚本的四种方法
SHELL 脚本编写规范 : 脚本开头 : # 脚本第一行 : #! /bin/bash 或 #!/bin/sh ( 脚本解释器 ) # 程序段开头需要加 版本版权信息 ,例如 : # Date 创建日期 # Author : 作者 # …...

【Spring】深入探索 Spring AOP:概念、使用与实现原理解析
文章目录 前言一、初识 Spring AOP1.1 什么是 AOP1.2 什么是 Spring AOP 二、AOP 的核心概念2.1 切面(Aspect)2.2 切点(Pointcut)2.3 通知(Advice)2.4 连接点(Join Point) 三、Sprin…...
LocalDate介绍和使用
1.什么是 LocalDate? 在我们开始之前,让我先简单介绍一下 LocalDate。它是 Java 8 中引入的日期类,用于表示不带时区信息的日期。也就是说,它专注于日期,并忽略了具体的时间。这样,我们就可以专心解决那些…...
三、使用注解形式开发 Spring MVC程序
文章目录 一、环境准备二、配置 web.xml三、配置 SpringMVC-Servlet.xml ,这里不再使用之前那种写法,直接采用注解配置,引入注解支持,配置视图解析器四、编写 Controller(Controller 和 RequestMapping 注解说明&#…...
【Go】常见的四个内存泄漏问题
Goroutine没有顺利结束 1、这里更多的是由于channelforselect导致的,错误的写法导致了发送者或接收者没有发现channel已经关闭,任务已经结束了,却仍然在尝试输入输出https://geektutu.com/post/hpg-exit-goroutine.html Map的remove方法不会…...

【LeetCode-简单】剑指 Offer 29. 顺时针打印矩阵(详解)
题目 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。 示例 1: 输入:matrix [[1,2,3],[4,5,6],[7,8,9]] 输出:[1,2,3,6,9,8,7,4,5]示例 2: 输入:matrix [[1,2,3,4],[5,6,7,8],[9,10,1…...
TOMCAT基础
tomcat是一个基于Java开发的,开放源代码的web应用服务器。它可以解析html页面中的java代码,执行动态请求,实现动态页面。核心功能是将收到的http请求处理并转发给适当的servlet来处理,然后将响应返回给客户端。 优点 1,…...
自动化集装箱码头建设指南
1 总则 1.0.1 为规范和指导自动化集装箱码头建设,提高自动化集装箱码头建设和装卸自动化应用水平,做到技术先进、经济合理、安全可靠、高效节能、绿色环保,制定本指南。 1.0.2本指南适用于新建、改建和扩建自动化集装箱码头的设计࿰…...
为什么要用redis
高性能 就是把你一些复杂操作耗时查出来的结果(用了600ms),如果确定后面不咋变了,然后但是马上还有很多读请求,那么直接结果放缓存(6ms),后面直接读缓存就好了。 这样,性能就提升了100倍 高并发 说白了就是…...

QT qmake解析
...

【TypeScript】this指向,this内置组件
this类型 TypeScript可推导的this类型函数中this默认类型对象中的函数中的this明确this指向 怎么指定this类型 this相关的内置工具类型转换ThisParameterType<>ThisParameterType<>ThisType TypeScript可推导的this类型 函数中this默认类型 对象中的函数中的this…...

c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...
.Net Framework 4/C# 关键字(非常用,持续更新...)
一、is 关键字 is 关键字用于检查对象是否于给定类型兼容,如果兼容将返回 true,如果不兼容则返回 false,在进行类型转换前,可以先使用 is 关键字判断对象是否与指定类型兼容,如果兼容才进行转换,这样的转换是安全的。 例如有:首先创建一个字符串对象,然后将字符串对象隐…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
在树莓派上添加音频输入设备的几种方法
在树莓派上添加音频输入设备可以通过以下步骤完成,具体方法取决于设备类型(如USB麦克风、3.5mm接口麦克风或HDMI音频输入)。以下是详细指南: 1. 连接音频输入设备 USB麦克风/声卡:直接插入树莓派的USB接口。3.5mm麦克…...

WebRTC调研
WebRTC是什么,为什么,如何使用 WebRTC有什么优势 WebRTC Architecture Amazon KVS WebRTC 其它厂商WebRTC 海康门禁WebRTC 海康门禁其他界面整理 威视通WebRTC 局域网 Google浏览器 Microsoft Edge 公网 RTSP RTMP NVR ONVIF SIP SRT WebRTC协…...
Windows 下端口占用排查与释放全攻略
Windows 下端口占用排查与释放全攻略 在开发和运维过程中,经常会遇到端口被占用的问题(如 8080、3306 等常用端口)。本文将详细介绍如何通过命令行和图形化界面快速定位并释放被占用的端口,帮助你高效解决此类问题。 一、准…...

Qt的学习(二)
1. 创建Hello Word 两种方式,实现helloworld: 1.通过图形化的方式,在界面上创建出一个控件,显示helloworld 2.通过纯代码的方式,通过编写代码,在界面上创建控件, 显示hello world; …...