当前位置: 首页 > news >正文

Python中使用隧道爬虫ip提升数据爬取效率

作为专业爬虫程序员,我们经常面临需要爬取大量数据的任务。然而,有些网站可能会对频繁的请求进行限制,这就需要我们使用隧道爬虫ip来绕过这些限制,提高数据爬取效率。本文将分享如何在Python中使用隧道爬虫ip实现API请求与响应的技巧。并进行详细的解析和实际代码示例,让我们一起学习如何提升数据爬取效率吧!

在这里插入图片描述

首先我们明确:为什么需要使用隧道爬虫ip?

在进行数据爬取的过程中,有些网站可能会限制频繁的请求,例如设置了IP限制或频率限制。为了绕过这些限制并提高数据爬取的效率,我们可以使用隧道爬虫ip,通过多个IP地址进行请求,从而避免被目标网站封禁或限制。

下面需要安装和配置爬虫ip库:使用requests和proxies

在Python中,我们可以使用requests库来发送HTTP请求,并通过配置proxies参数来使用隧道爬虫ip。以下是一个示例代码:

import requestsproxies = {'http': 'http://proxy_address:proxy_port','https': 'http://proxy_address:proxy_port'
}response = requests.get("http://api_url", proxies=proxies)
print(response.text)

在以上示例中,我们通过设置proxies字典来指定爬虫ip服务器的地址和端口。然后,我们可以像正常发送请求一样使用requests库发送API请求,通过爬虫ip服务器进行请求和响应。

准备多个爬虫ip轮流使用:实现隧道效果

为了提高隧道爬虫ip的效果,我们可以配置多个爬虫ip服务器,并轮流使用它们。以下是一个示例代码:

import requestsproxies = ['http://proxy1_address:proxy1_port','http://proxy2_address:proxy2_port','http://proxy3_address:proxy3_port'
]for proxy in proxies:proxy_dict = {'http': proxy,'https': proxy}try:response = requests.get("http://api_url", proxies=proxy_dict)print(response.text)break  # 成功获取响应,跳出循环except requests.exceptions.RequestException:continue  # 请求异常,尝试下一个爬虫ip

在以上示例中,我们通过使用迭代器循环遍历爬虫ip列表,并配置相应的爬虫ip字典。然后,我们尝试发送请求并获取响应。如果请求成功,我们打印响应内容并跳出循环;如果请求失败,则尝试下一个爬虫ip。

需要注意爬虫ip池的维护与使用:自动切换爬虫ip

为了更方便地管理和使用爬虫ip服务器,我们可以使用爬虫ip池。爬虫ip池可以自动维护一组可用的爬虫ip服务器,并在发送请求时自动切换。以下是一个示例代码:

import requests
from random import choiceproxy_pool = ['http://proxy1_address:proxy1_port','http://proxy2_address:proxy2_port','http://proxy3_address:proxy3_port'
]def get_random_proxy():return choice(proxy_pool)def make_request(url):proxy = get_random_proxy()proxy_dict = {'http': proxy,'https': proxy}response = requests.get(url, proxies=proxy_dict)print(response.text)# 使用爬虫ip池发送请求
make_request("http://api_url")

在以上示例中,我们定义了一个爬虫ip池,其中包含多个爬虫ip服务器的地址和端口。通过调用get_random_proxy函数,我们可以随机获取一个爬虫ip地址,并使用该地址配置爬虫ip字典。然后,我们发送请求并获取响应。

通过使用隧道爬虫ip来实现API请求与响应,我们可以绕过网站的限制,提高数据爬取的效率。在本文中,我们分享了背景分析、安装和配置爬虫ip库、多个爬虫ip轮流使用以及爬虫ip池的维护与使用的知识。
希望这些内容能为您提供实际操作价值,助您在爬虫程序开发中取得更好的效果。如果还有其他相关的问题,欢迎评论区讨论留言,我会尽力为大家解答。

相关文章:

Python中使用隧道爬虫ip提升数据爬取效率

作为专业爬虫程序员,我们经常面临需要爬取大量数据的任务。然而,有些网站可能会对频繁的请求进行限制,这就需要我们使用隧道爬虫ip来绕过这些限制,提高数据爬取效率。本文将分享如何在Python中使用隧道爬虫ip实现API请求与响应的技…...

深入源码分析kubernetes informer机制(四)DeltaFIFO

[阅读指南] 这是该系列第四篇 基于kubernetes 1.27 stage版本 为了方便阅读,后续所有代码均省略了错误处理及与关注逻辑无关的部分。 文章目录 client-go中的存储结构DeltaFIFOdelta索引 keyqueue push操作delta push 去重 queue pop操作 总结 client-go中的存储结构…...

UI设计师个人工作总结范文

UI设计师个人工作总结范文篇一 感受到了领导们“海纳百川”的胸襟,感受到了作为广告人“不经历风雨,怎能见彩虹”的豪气,也体会到了重庆广告从业人员作为拓荒者的艰难和坚定(就目前国内广告业而言,我认为重庆广告业尚在发展阶段并…...

explicit关键字 和 static成员

explicit关键字 和 static成员 1、explicit 关键字2、static成员(静态成员变量属于类的(只有所属这个类的对象才能修改),不同于全局变量(任何对象都能修改))2.1 定义和性质2.2 静态成员的使用场…...

安装Linux操作系统CentOS 6详细图文步骤

为满足业务对Linux操作系统部署的要求,本文档主要提供CentOS 6操作系统的最小化安装和基本配置, 安装本系统建议最少1GB内存和2GB磁盘空间。 1、 使用光盘或者挂载ISO镜像,在出现如下图形界面时选择【Install or upgrade an existing system】并按Ent…...

新增守护进程管理、支持添加MySQL远程数据库,支持PHP版本切换,1Panel开源面板v1.5.0发布

2023年8月14日,现代化、开源的Linux服务器运维管理面板1Panel正式发布v1.5.0版本。 在这个版本中,1Panel新增了守护进程管理功能;支持添加MySQL远程数据库;支持添加FTP/S和WebDAV的SFTP服务;支持PHP版本切换。此外&am…...

十、接口(1)

本章概要 抽象类和方法接口创建 默认方法多继承接口中的静态方法Instrument 作为接口 接口和抽象类提供了一种将接口与实现分离的更加结构化的方法。 这种机制在编程语言中不常见,例如 C 只对这种概念有间接的支持。而在 Java 中存在这些关键字,说明…...

percentile_approx 聚合函数

返回组内 expr 的百分位近似值。 此函数是 approx_percentile 聚合函数的同义词。 语法 percentile_approx ( [ALL | DISTINCT ] expr, percentile [, accuracy] ) [FILTER ( WHERE cond ) ] 还可以使用 OVER 子句将此函数作为窗口函数调用。 参数 expr:数值表达…...

面试热题(全排列)

给定一个不含重复数字的整数数组 nums ,返回其 所有可能的全排列 。可以 按任意顺序 返回答案。 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]] 先在这里说明一下排列和组合的区别? 组合:是指从一…...

一文走进时序数据库性能测试工具 TSBS

一、背景 在物联网、车联网等时序数据场景中,数据的高速写入能力至关重要,会对产品方案的可用性、可靠性和扩展性产生影响。 以物联网为例,当面临千万甚至上亿设备、平均每个设备采集几十个到几百个指标时,每秒生成的数据将达到…...

通俗讲解-动量梯度下降法原理与代码实例

本站原创文章,转载请说明来自《老饼讲解-BP神经网络》bp.bbbdata.com 目录 一.动量梯度下降法介绍 1.1 动量梯度下降法简介与思想 1.2 动量梯度下降法的算法流程 二.动量梯度下降法代码实例 2.1 动量梯度下降法实例代码 一.动量梯度下降法介绍…...

【【STM32-USART串口协议】】

STM32-USART串口协议 USART串口协议 •通信的目的:将一个设备的数据传送到另一个设备,扩展硬件系统 •通信协议:制定通信的规则,通信双方按照协议规则进行数据收发 就是我们并不能在芯片上设计完全部的一下子完成所有的设计&…...

vue3.0组件通信

1、props 没有加TS限制类型的时候 1. 数组写法 defineProps([count, changCount]) 2. 对象写法 defineProps({count: Number,changCount: Function }) 3. 配置对象 defineProps({count: {type: Number,default: 2},changCount: {type: Function,required: true} })注意: defi…...

费曼学习法

费曼学习法 费曼学习法(Feynman Technique)是一种学习和理解复杂概念的方法,以理查德费曼(Richard Feynman)这位著名的理论物理学家命名。该方法的核心思想是通过将学习内容简化并用自己的话解释给别人,来…...

Kubernetes介绍和部署,使用

1.k8s kubernetes来自希腊语舵手,google, 8是ubernete 1.管理docker容器 go写的(并发) 2.用于微服务 3.cncf云原生基金会 2.mater(管理节点)和nodes(微服务节点) 3.部署 1.minikube kind官网在线测试语句 2.kubeadm(官方)(安装比较方便 添加) 3.github下载二进制包 4.yum(老) …...

视频汇聚平台EasyCVR视频监控播放平台WebRTC流地址无法播放的问题解决方案

开源EasyDarwin视频监控TSINGSEE青犀视频平台EasyCVR能在复杂的网络环境中,将分散的各类视频资源进行统一汇聚、整合、集中管理,在视频监控播放上,TSINGSEE青犀视频安防监控汇聚平台可支持1、4、9、16个画面窗口播放,可同时播放多…...

node.js 基础高并发案例

什么是高并发 高并发是指系统在同一时间段内需要处理大量的并发请求或同时进行大量的操作。在计算机领域中,高并发通常指的是在短时间内有大量的用户或客户端同时访问系统或进行操作,对系统的并发处理能力提出了较高的要求。 高并发的特点包括 大量的…...

OpenCV实例(八)车牌字符识别技术(二)字符识别

车牌字符识别技术(二)字符识别 1.字符识别原理及其发展阶段2.字符识别方法3.英文、数字识别4.车牌定位实例 1.字符识别原理及其发展阶段 匹配判别是字符识别的基本思想,与其他模式识别的应用非常类似。字符识别的基本原理就是对字符图像进行…...

svn文章五:问题排查与修复 - 出了问题怎么办?SVN故障排除与修复指南

文章五:问题排查与修复 - “出了问题怎么办?SVN故障排除与修复指南” 概述:在使用SVN时,难免会遇到一些问题和错误。在这篇文章中,我们将教您如何进行故障排查和修复,保护您的SVN仓库和数据安全。 1. 引言…...

国产开源ambari之DataSophon部署

介绍 DataSophon致力于快速实现部署、管理、监控以及自动化运维大数据云原生平台,帮助您快速构建起稳定、高效、可弹性伸缩的大数据云原生平台。 主要特性有: 快速部署,可快速完成300个节点的大数据集群部署兼容复杂环境,极少的依赖使其很容易适配各种复杂环境监控指标全面丰…...

Spring Boot 常用注解面试题深度解析

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot 常用注解面试题深度解析一、核心…...

佰力博科技与您探讨材料介电性能测试的影响因素

1、频率依赖性 材料的介电性能通常具有显著的频率依赖性。在低频下,偶极子的取向极化占主导,介电常数较高;而在高频下,偶极子的取向极化滞后,导致介电常数下降,同时介电损耗增加。例如,VHB4910…...

从游戏到自动驾驶:互联网时代强化学习如何让机器学会自主决策?

一、为什么机器需要“试错学习”?——强化学习的核心秘密 你有没有玩过《超级马里奥》?当你操控马里奥躲避乌龟、跳过悬崖时,其实就在用一种“试错”的方法学习最优路径。强化学习(Reinforcement Learning, RL)就是让…...

爬虫学习记录day1

什么是逆向? 数据加密 参数加密 表单加密扣js改写Python举例子 4.1 元素:被渲染的数据资源 动态数据 静态数据 如果数据是加密的情况则无法直接得到数据 4.2 控制台:输出界面 4.3 源代码页面 4.4 网络:抓包功能,获取浏…...

第二十八章 字符串与数字

第二十八章 字符串与数字 计算机程序完全就是和数据打交道。很多编程问题需要使用字符串和数字这种更小的数据来解决。 参数扩展 第七章,已经接触过参数扩展,但未进行详细说明,大多数参数扩展并不用于命令行,而是出现在脚本文件中。 如果没有什么特殊原因,把参数扩展放…...

【MySQL系列】MySQL 执行 SQL 文件

博客目录 一、MySQL 执行 SQL 文件的常见场景二、MySQL 执行 SQL 文件的主要方法1. 使用 MySQL 命令行客户端2. 在 MySQL 交互界面中使用 source 命令3. 使用 MySQL Workbench 等图形化工具4. 使用编程语言接口 三、执行 SQL 文件时的注意事项1. 字符集问题2. 事务处理3. 错误处…...

GeoBoundaries下载行政区划边界数据(提供中国资源shapefile)

要下载山东省济南市各个区的行政区划边界数据,你可以通过 geoBoundaries 提供的数据来实现。下面是详细步骤,包括网页操作和可选的 Python 自动化方式。 目录 ✅ 一、通过 geoBoundaries 官网手动下载1. 打开官网:2. 查找中国数据&#xff1a…...

PDF转Markdown/JSON软件MinerU最新1.3.12版整合包下载

MinerU发布至今我已经更新多版整合包了,5天前MinerU发布了第一个正式版1.0.1,并且看到在18小时之前有更新模型文件,我就做了个最新版的一键启动整合包。 2025年02月21日更新v1.1.0版整合包 2025年02月27日更新v1.2.0版整合包 2025-06-05 更…...

记一次运行spark报错

提交spark任务运次报错 06/03 18:27:50 INFO Client: Setting up container launch context for our AM 25/06/03 18:27:50 INFO Client: Setting up the launch environment for our AM container 25/06/03 18:27:50 INFO Client: Preparing resources for our AM container …...

前端开发三剑客:HTML5+CSS3+ES6

在前端开发领域,HTML、CSS和JavaScript构成了构建网页与Web应用的核心基础。随着技术标准的不断演进,HTML5、CSS3以及ES6(ECMAScript 2015及后续版本)带来了诸多新特性与语法优化,极大地提升了开发效率和用户体验。本文…...