当前位置: 首页 > news >正文

vue-photo-preview( 照片预览功能 )

安装

npm install vue-photo-preview --save

引入项目

import preview from 'vue-photo-preview'
import 'vue-photo-preview/dist/skin.css'let options = {fullscreenEl: false  //是否可以全屏预览
};
Vue.use(preview, options)如果不写options 和 Vue.use(preview,options),那么默认具有全屏预览的功能Vue.use(preview)

html代码

//在img标签添加preview属性 preview值相同即表示为同一组
<img src="xxx.jpg" preview="0" preview-text="描述文字">//分组
<img src="xxx.jpg" preview="1" preview-text="描述文字">
<img src="xxx.jpg" preview="1" preview-text="描述文字"><img src="xxx.jpg" preview="2" preview-text="描述文字">
<img src="xxx.jpg" preview="2" preview-text="描述文字">

重点注意

在获取异步数据的时候可能遇到的问题

解决方法:

如果数据是异步获取回来的,会出现不管你怎么点击,都不会出现效果。这就需要在你成功获取数据回来之后,加上 this.$previewRefresh() ,刷新重置一下。

相关文章:

vue-photo-preview( 照片预览功能 )

安装 npm install vue-photo-preview --save 引入项目 import preview from vue-photo-preview import vue-photo-preview/dist/skin.csslet options {fullscreenEl: false //是否可以全屏预览 }; Vue.use(preview, options)如果不写options 和 Vue.use(preview,options)&…...

Angular 独立组件入门

Angular 独立组件入门 如果你正在学习 Angular&#xff0c;那么你可能已经听说过独立组件&#xff08;Component&#xff09;。顾名思义&#xff0c;独立组件就是可以独立使用和管理的组件&#xff0c;它们能够被包含在其他组件中或被其他组件引用。 在本文中&#xff0c;我们…...

Lie group 专题:Lie 群

Lie group 专题&#xff1a;Lie 群 流形 流形的定义 一个m维流形是满足以下条件的集合M&#xff1a;存在可数多个称为坐标卡&#xff08;图集&#xff09;的子集合族.以及映到的连通开子集上的一对一映射&#xff0c;,称为局部坐标映射&#xff0c;满足以下条件 坐标卡覆盖M…...

Vue-打印组件页面

场景: 需要将页面的局部信息打印出来&#xff0c;只在前端实现&#xff0c;不要占用后端的资源。经过百度经验&#xff0c;决定使用 print-js和html2canvas组件。 1. 下载包 npm install print-js --save npm install --save html2canvas 2. 组件内引用 <script>impo…...

Python爬虫——scrapy_基本使用

安装scrapy pip install scrapy创建scrapy项目&#xff0c;需要在终端里创建 注意&#xff1a;项目的名字开头不能是数字&#xff0c;也不能包含中文 scrapy startproject 项目名称 示例&#xff1a; scrapy startproject scra_baidu_36创建好后的文件 3. 创建爬虫文件&…...

30 | 中国高校数据分析

一、数据源 本项目使用了两个csv的数据文件,一个是中国高校(大学)的数据,一个是中国高校专业设置的数据 数据基本栏位:高校(大学)的数据高校专业设置的数据学校学校省份专业类别城市专业名称地址国家特色专业水平层次办学类别办学类型985211双一流二、数据分析目标 本…...

开源低代码平台Openblocks

网友 HankMeng 想看低代码工具&#xff0c;正好手上有一个&#xff1b; 什么是 Openblocks &#xff1f; Openblocks 是一个开发人员友好的开源低代码平台&#xff0c;可在几分钟内构建内部应用程序。 传统上&#xff0c;构建内部应用程序需要复杂的前端和后端交互&#xff0c;…...

每日汇评:黄金在 200 日移动平均线附近似乎很脆弱,关注美国零售销售

1、金价预计将巩固其近期跌势&#xff0c;至 6 月初以来的最低水平&#xff1b; 2、对美联储再次加息的押注继续限制了贵金属的上涨&#xff1b; 3、金融市场现在期待美国零售销售报告带来一些有意义的推动&#xff1b; 周二金价难以获得任何有意义的牵引力&#xff0c;并在…...

DFT笔记 DC/AC mode与Func

DFT scan可以分为DC和AC两种&#xff0c;区别如下图 DC模式需要ate测试机台提供test clock时钟&#xff08;最快100M&#xff09;&#xff0c;DFT工程师需要升级普通reg变成带si和so&#xff0c;se pin的reg&#xff0c;并插入扫描链&#xff08;scan chain&#xff09;&#x…...

docker核心操作

docker核心操作 1、docker安装(1)可选参数:(2)输出参数解释:2、docker镜像(1)拉取镜像:[https://www.docker.com/](https://www.docker.com/)3、运行docker镜像(1) 运行容器:(2) 挂载硬盘:4、docker容器的生命周期5.1、进入容器内部5.2、怎么解决Error: exec fai…...

《电路》基础知识入门学习笔记

文章目录&#xff1a; 一&#xff1a;电路模型和电路规律 1.电路概述 2.电路模型 3.基本电路物理量&#xff1a;电流、电压、电功率和能量 4.电流和电压的参考方向 5.电路元件—电阻 6. 电路元件—电压源和电流源 7.受控电源 8.基尔霍夫&#xff08;后面都要用这个方法…...

什么是P2P?

P2P (Peer-to-Peer) 是一种分布式的网络架构&#xff0c;其中各个节点&#xff08;通常被称为“peers”或“节点”&#xff09;直接进行数据共享和交换&#xff0c;而无需依赖中央服务器。P2P 网络强调平等的参与和共享&#xff0c;每个节点既可以是数据的消费者&#xff08;下…...

matlab RANSAC拟合多项式曲线

目录 一、功能概述1、算法概述2、主要函数3、参考文献二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,原文链接。爬虫网站自重,把自己当个人。爬些不完整的误导别人有意思吗???? 一、功能概述 1、算法概述 使用RANSAC对点进行多项式拟合。...

微信小程序nfc指令异常记录

小程序nfc相关代码: readEvent(){wx.getNFCAdapter().startDiscovery({success:(res)>{console.log(--------------start--------)console.log(res);wx.getNFCAdapter().onDiscovered(callback>{console.log(------------onDiscovered----------)console.log(callback)…...

10 - 把间隔的几个commit整理成1个

查看所有文章链接&#xff1a;&#xff08;更新中&#xff09;GIT常用场景- 目录 文章目录 把间隔的几个commit整理成1个 把间隔的几个commit整理成1个...

关于 Eclipse 的一场 “三角关系”

上个世纪 90 年代&#xff0c;世界上的计算机要么不联网&#xff0c;要么在企业内部联网。但是&#xff0c;在互联网的概念下&#xff0c;计算机之间共享信息和资源的需求成为了必要。 1995 年 5 月&#xff0c;Java 横空出世。Java 的父亲是当时凭借 Solaris 操作系统风头正盛…...

koa 使用 Mongoose 查询数据

Mongosee 操作符koa 使用 Mongoose 进行 翻页查询koa 使用 Mongoose 进行 多条件查询 mongosee 操作符 在使用 Koa 和 Mongoose 进行数据库查询时&#xff0c;你可以使用以下常用的操作符来构建查询条件&#xff1a; $eq&#xff1a;等于 示例&#xff1a;{ field: { $eq: valu…...

前后端分离------后端创建笔记(10)用户修改

本文章转载于【SpringBootVue】全网最简单但实用的前后端分离项目实战笔记 - 前端_大菜007的博客-CSDN博客 仅用于学习和讨论&#xff0c;如有侵权请联系 源码&#xff1a;https://gitee.com/green_vegetables/x-admin-project.git 素材&#xff1a;https://pan.baidu.com/s/…...

K8S系列文章之 Docker安装使用Kafka

通过Docker拉取镜像的方式进行安装 照例先去DockerHub找一下镜像源&#xff0c;看下官方提供的基本操作&#xff08;大部分时候官方教程比网上的要清晰一些&#xff0c;并且大部分教程可能也是翻译的官方的操作步骤&#xff0c;所以直接看官方的就行&#xff09; 老实说Kafka…...

js如何获取字符串大小是几M

js如何获取字符串大小是几M 在JavaScript中&#xff0c;可以使用以下方法来获取字符串的大小&#xff08;以字节为单位&#xff09;&#xff1a; function getStringSizeInBytes(str) {// 使用UTF-8编码计算字符串的字节长度let totalBytes new Blob([str]).size;// 将字节长…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代&#xff0c;情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现&#xff0c;消费者对内容的“有感”程度&#xff0c;正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南

&#x1f680; C extern 关键字深度解析&#xff1a;跨文件编程的终极指南 &#x1f4c5; 更新时间&#xff1a;2025年6月5日 &#x1f3f7;️ 标签&#xff1a;C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言&#x1f525;一、extern 是什么&#xff1f;&…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

【Java学习笔记】BigInteger 和 BigDecimal 类

BigInteger 和 BigDecimal 类 二者共有的常见方法 方法功能add加subtract减multiply乘divide除 注意点&#xff1a;传参类型必须是类对象 一、BigInteger 1. 作用&#xff1a;适合保存比较大的整型数 2. 使用说明 创建BigInteger对象 传入字符串 3. 代码示例 import j…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...