当前位置: 首页 > news >正文

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测

目录

    • 分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测
2.代码说明:要求于Matlab 2021版及以上版本。

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复 MATLAB实现GAPSO-LSSVM多输入分类预测获取。
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%%  个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :);     % 全局最佳
gbest = pop;                   % 个体最佳
fitnessgbest = fitness;        % 个体最佳适应度值
BestFit = fitnesszbest;        % 全局最佳适应度值%%  迭代寻优
for i = 1 : maxgenfor j = 1 : sizepop% 速度更新V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));V(j, (V(j, :) > Vmax)) = Vmax;V(j, (V(j, :) < Vmin)) = Vmin;% 种群更新pop(j, :) = pop(j, :) + 0.2 * V(j, :);pop(j, (pop(j, :) > popmax)) = popmax;pop(j, (pop(j, :) < popmin)) = popmin;% 自适应变异pos = unidrnd(numsum);if rand > 0.95pop(j, pos) = rands(1, 1);end% 适应度值fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);endfor j = 1 : sizepop% 个体最优更新if fitness(j) < fitnessgbest(j)gbest(j, :) = pop(j, :);fitnessgbest(j) = fitness(j);end% 群体最优更新 if fitness(j) < fitnesszbestzbest = pop(j, :);fitnesszbest = fitness(j);endendBestFit = [BestFit, fitnesszbest];    
end
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130462492

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129679476?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/129659229?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129653829?spm=1001.2014.3001.5501

相关文章:

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测

分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 目录 分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.分类预测 | MATLAB实现GAPSO-LSSVM多输入分类预测 2.代码说明&#xff1a;要求于Matlab 2021版及以上版本。 程序…...

JMeter 的并发设置教程

JMeter 是一个功能强大的性能测试工具&#xff0c;可以模拟许多用户同时访问应用程序的情况。在使用 JMeter 进行性能测试时&#xff0c;设置并发是非常重要的。本文将介绍如何在 JMeter 中设置并发和查看报告。 设置并发 并发是在线程组下的线程属性中设置的。 线程数&#…...

数据治理有哪些产品

数据治理是现代企业管理中至关重要的一个环节。随着企业的数据量不断增长&#xff0c;如何有效地管理和利用数据成为了一个亟待解决的问题。幸运的是&#xff0c;市场上已经涌现出了许多优秀的数据治理产品&#xff0c;下面就来介绍一些常见的数据治理产品。 首先&#xff0c;我…...

windows安装go,以及配置工作区,配置vscode开发环境

下载安装go 我安装在D:\go路径下配置环境变量 添加GOROOT value为D:\go修改path 添加%GOROOT%\bin添加GOPATH value为%USERPROFILE%\go 其中GOPATH 是我们自己开发的工作区&#xff0c;其中包含三个folder bin,pkg,以及src&#xff0c;其中src为我们编写代码的位置 配置vscod…...

第五章nginx负载均衡

负载均衡&#xff1a;反向代理来实现 nginx的七层代理&#xff1a; 七层是最常用的反向代理方式&#xff0c;只能配置在nginx配置文件的hppt模块中。而且配置方法名称&#xff1a;upstream模块&#xff0c;不能写在server中&#xff0c;也不能在location中&#xff0c;在http…...

MATLAB计算一组坐标点的相互距离(pdist、squareform、pdist2函数)

如果有一组坐标P(X,Y)&#xff0c;包含多个点的X和Y坐标&#xff0c;计算其坐标点之间的相互距离 一、坐标点 P[1 1;5 2;3 6;8 8;4 5;5 1; 6 9];二、pdist函数 输出的结果是一维数组&#xff0c;获得任意两个坐标之间的距离&#xff0c;但没有对应关系 Dpdist(P)三、square…...

我国农机自动驾驶系统需求日益增长,北斗系统赋能精准农业

中国现代农业的发展&#xff0c;离不开智能化、自动化设备&#xff0c;迫切需要自动驾驶系统与农用机械的密切结合。自动驾驶农机不仅能够缓解劳动力短缺问题&#xff0c;提升劳作生产效率&#xff0c;同时还能对农业进行智慧化升级&#xff0c;成为解决当下农业痛点的有效手段…...

防雷检测行业应用完整解决方案

防雷检测是指对雷电防护装置的性能、质量和安全进行检测的活动&#xff0c;是保障人民生命财产和公共安全的重要措施。防雷检测的作用和意义主要有以下几点&#xff1a; 防止或减少雷电灾害事故的发生。雷电是一种自然现象&#xff0c;具有不可预测、不可控制和高能量等特点&a…...

16.4 【Linux】特殊文件与程序

16.4.1 具有 SUID/SGID 权限的指令执行状态 SUID 的权限其实与程序的相关性非常的大&#xff01;为什么呢&#xff1f;先来看看 SUID 的程序是如何被一般使用者执行&#xff0c;且具有什么特色呢&#xff1f; SUID 权限仅对二进制程序&#xff08;binary program&#xff09;…...

qrcode.react生成二维码

qrcode.react 是一个**用于生成二维码&#xff08;QR 码&#xff09;的 React 组件库。**它提供了一个 React 组件&#xff0c;可以轻松地在 React 应用程序中生成和显示 QR 码。 使用 qrcode.react&#xff0c;可以以声明式的方式在 React 组件中定义 QR 码的内容、尺寸、颜色…...

ETF套利及交易者如何进行套利的

ETF套利 什么是ETF套利为什么同一ETF在不同交易所上的价格会出现差异&#xff1f;如何操作ETF套利交易所如何解决ETF套利问题的&#xff1f; 什么是ETF套利 ETF&#xff08;Exchange-Traded Fund&#xff09;套利是一种通过利用市场中不同交易所交易价格之间的差异来获得利润的…...

了解异或的好处和用途

1.什么是异或&#xff1f; 异或&#xff1a;对于二进制&#xff0c;相同为0 不同为11 ⊕ 1 00 ⊕ 0 01 ⊕ 0 10 ⊕ 1 1 2.异或的好处&#xff1f; 异或的好处&#xff1f;1.快速比较两个值 2.xor a a例如 a 3 011xor 0110003.可以使用 异或 来使某些特定的位翻转【原因…...

vue函数式组件

<template>改为<template functional> 即可然后模板里使用到父组件参数的话&#xff0c;需在变量前面加上 props&#xff0c;如 <div>{{count}}</div> 改为 <div>{{props.count}}</div>如果组件比较简单&#xff0c;只是展示数据的话&…...

Idea Live Template 功能总结

文章目录 Java自带的template属性模板psf——public static finalpsfi——public static final intpsfi——public static final StringSt——String 方法模板psvm——main方法sout——打印语句iter——for迭代循环fori——for循环 代码块模板if-e —— if elseelse-if 自定义自…...

场景入门12----构造脚本搭建栅栏和石头墙

打开任意一个蓝图都有构造脚本&#xff0c;就是当这个蓝图在诞生时就会运行的东西 新建一个蓝图&#xff0c;在构造函数里添加静态网格体&#xff0c;把蓝图拖出来就能显示 多个栅栏 创建多个栅栏。新建一个变量为栅栏数量&#xff0c;数组从0开始&#xff0c;所以countt要减一…...

零基础看懂免费开源的Stable Diffusion

文章目录 前言Diffusion模型推理过程训练过程 Stable Diffusion模型参考 前言 前面一篇文章主要讲了扩散模型的理论基础&#xff0c;还没看过上篇的小伙伴可以点击查看&#xff1a;DDPM理论基础。这篇我们主要讲一下一经推出&#xff0c;就火爆全网的Stable Diffusion模型。St…...

Zmq适配Win7 SP0 / Win XP/ Win 2k

1.目的 由于发布版本的libzmq使用了较多新的系统特性&#xff0c;导致在低版本windows平台上无法使用。 因此&#xff0c;需要对zmq源码进行修改以适配低版本的系统&#xff0c;如Win7 SP0&#xff0c;Win XP&#xff0c;Win2003等等。 2.Win7 SP0 #if defined ZMQ_HAVE_WIN…...

掌握Python的X篇_30_使用python解析网页HTML

本篇将会介绍beutifulsoup4模块&#xff0c;可以用于网络爬虫、解析HTML和XML&#xff0c;对于没有接触过前端&#xff0c;不了解HTML是如何工作的&#xff0c;需要先解释一下什么事HTML。 1. HTML 网页中的各种布局等的背后都是非常简单的纯文本格式&#xff0c;那种格式称为…...

广联达OA前台sql注入+后台文件上传漏洞复现分析

文章目录 前言资产特征前台sql注入后台文件上传解决办法 前言 最近看到广联达OA的前端sql注入和后端文件上传漏洞联动的poc 广联达科技股份有限公司以建设工程领域专业应用为核心基础支撑&#xff0c;提供一百余款基于“端云大数据”产品/服务&#xff0c;提供产业大数据、产业…...

No view found for id 0x7f0901c3 for fragment解决以及线上bug排查技巧

情景再现 开发这么久&#xff0c;不知道你们是否也经历过这样的情况&#xff0c;测试或者用户&#xff0c;反馈app闪退&#xff0c;结果你自己打开开发工具&#xff0c;去调试&#xff0c;一切正常&#xff0c;然后闪退还是存在&#xff0c;只是在开发环境中不能重现。这种情况…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院查看报告小程序

一、开发环境准备 ​​工具安装​​&#xff1a; 下载安装DevEco Studio 4.0&#xff08;支持HarmonyOS 5&#xff09;配置HarmonyOS SDK 5.0确保Node.js版本≥14 ​​项目初始化​​&#xff1a; ohpm init harmony/hospital-report-app 二、核心功能模块实现 1. 报告列表…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》

这段 Python 代码是一个完整的 知识库数据库操作模块&#xff0c;用于对本地知识库系统中的知识库进行增删改查&#xff08;CRUD&#xff09;操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 &#x1f4d8; 一、整体功能概述 该模块…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...