机器学习样本数据划分的典型Python方法
机器学习样本数据划分的典型Python方法
| Date | Author | Version | Note |
|---|---|---|---|
| 2023.08.16 | Dog Tao | V1.0 | 完成文档撰写。 |
文章目录
- 机器学习样本数据划分的典型Python方法
- 样本数据的分类
- Training Data
- Validation Data
- Test Data
- numpy.ndarray类型数据
- 直接划分
- 交叉验证
- 基于`KFold`
- 基于`RepeatedKFold`
- 基于`cross_val_score`
- torch.tensor类型数据
- 直接划分
- 基于TensorDataset
- 基于切片方法
- 交叉验证
样本数据的分类
In machine learning and deep learning, the data used to develop a model can be divided into three distinct sets: training data, validation data, and test data. Understanding the differences among them and their distinct roles is crucial for effective model development and evaluation.
Training Data
- Purpose: The training data is used to train the model. It’s the dataset the algorithm will learn from.
- Usage: The model parameters are adjusted or “learned” using this data. For example, in a neural network, weights are adjusted using backpropagation on this data.
- Fraction: Typically, a significant majority of the dataset is allocated to training (e.g., 60%-80%).
- Issues: Overfitting can be a concern if the model becomes too specialized to the training data, leading it to perform poorly on unseen data.
Validation Data
- Purpose: The validation data is used to tune the model’s hyperparameters and make decisions about the model’s structure (e.g., choosing the number of hidden units in a neural network or the depth of a decision tree).
- Usage: After training on the training set, the model is evaluated on the validation set, and adjustments to the model (like changing hyperparameters) are made based on this evaluation. The process might be iterative.
- Fraction: Often smaller than the training set, typically 10%-20% of the dataset.
- Issues: Overfitting to the validation set can happen if you make too many adjustments based on the validation performance. This phenomenon is sometimes called “validation set overfitting” or “leakage.”
Test Data
- Purpose: The test data is used to evaluate the model’s final performance after training and validation. It provides an unbiased estimate of model performance in real-world scenarios.
- Usage: Only for evaluation. The model does not “see” this data during training or hyperparameter tuning. Once the model is finalized, it is tested on this dataset to gauge its predictive performance.
- Fraction: Typically, 10%-20% of the dataset.
- Issues: To preserve the unbiased nature of the test set, it should never be used to make decisions about the model. If it’s used in this way, it loses its purpose, and one might need a new test set.
Note: The exact percentages mentioned can vary based on the domain, dataset size, and specific methodologies. In practice, strategies like k-fold cross-validation might be used, where the dataset is split into k subsets, and the model is trained and validated multiple times, each time using a different subset as the validation set and the remaining data as the training set.
In summary, the distinction among training, validation, and test data sets is crucial for robust model development, avoiding overfitting, and ensuring that the model will generalize well to new, unseen data.

numpy.ndarray类型数据
直接划分
To split numpy.ndarray data into a training set and validation set, you can use the train_test_split function provided by the sklearn.model_selection module.
Here’s a brief explanation followed by an example:
-
Function Name:
train_test_split() -
Parameters:
- arrays: Sequence of indexables with the same length. Can be any data type.
- test_size: If float, should be between 0.0 and 1.0, representing the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples.
- train_size: Complement to
test_size. If not provided, the value is set to the complement of the test size. - random_state: Seed for reproducibility.
- shuffle: Whether to shuffle before splitting. Default is True.
- stratify: If not None, the data is split in a stratified fashion using this as the class labels.
-
Returns: Split arrays.
Example:
Let’s split an example dataset into a training set (80%) and a validation set (20%):
import numpy as np
from sklearn.model_selection import train_test_split# Sample data
X = np.random.rand(100, 5) # 100 samples, 5 features
y = np.random.randint(0, 2, 100) # 100 labels, binary classification# Split the data
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)print("Training set size:", len(X_train))
print("Validation set size:", len(X_val))
- If you want the split to be reproducible (i.e., get the same split each time you run the code), set the
random_stateto any integer value. - If you’re working with imbalanced datasets and want to ensure that the class distribution is the same in both the training and validation sets, you can use the
stratifyparameter. Settingstratify=ywill ensure that the splits have the same class distribution as the original dataset.
交叉验证
基于KFold
For performing ( n )-fold cross-validation on numpy.ndarray data, you can use the KFold class from the sklearn.model_selection module.
Here’s how you can use ( n )-fold cross-validation:
-
Class Name:
KFold -
Parameters of
KFold:- n_splits: Number of folds.
- shuffle: Whether to shuffle the data before splitting into batches.
- random_state: Seed used by the random number generator for reproducibility.
Example:
Let’s say you want 5-fold cross-validation:
import numpy as np
from sklearn.model_selection import KFold# Sample data
X = np.random.rand(100, 5) # 100 samples, 5 features
y = np.random.randint(0, 2, 100) # 100 labels, binary classificationkf = KFold(n_splits=5, shuffle=True, random_state=42)for train_index, val_index in kf.split(X):X_train, X_val = X[train_index], X[val_index]y_train, y_val = y[train_index], y[val_index]print("Training set size:", len(X_train))print("Validation set size:", len(X_val))print("---")
- Each iteration in the loop gives you a different split of training and validation data.
- The training and validation indices are generated based on the size of
X. - If you want the split to be reproducible (i.e., get the same split each time you run the code), set the
random_stateparameter. - In case you want stratified k-fold cross-validation (where the folds are made by preserving the percentage of samples for each class), use
StratifiedKFoldinstead ofKFold. This can be particularly useful for imbalanced datasets.
基于RepeatedKFold
RepeatedKFold repeats K-Fold cross-validator. For each repetition, it splits the dataset into k-folds and then the k-fold cross-validation is performed. This results in having multiple scores for multiple runs, which might give a more comprehensive evaluation of the model’s performance.
Parameters:
- n_splits: Number of folds.
- n_repeats: Number of times cross-validator needs to be repeated.
- random_state: Random seed for reproducibility.
Example:
import numpy as np
from sklearn.model_selection import RepeatedKFoldX = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 2, 3, 4])rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=42)for train_index, test_index in rkf.split(X):print("TRAIN:", train_index, "TEST:", test_index)X_train, X_test = X[train_index], X[test_index]y_train, y_test = y[train_index], y[test_index]
基于cross_val_score
cross_val_score evaluates a score by cross-validation. It’s a quick utility that wraps both the steps of splitting the dataset and evaluating the estimator’s performance.
Parameters:
- estimator: The object to use to fit the data.
- X: The data to fit.
- y: The target variable for supervised learning problems.
- cv: Cross-validation strategy.
- scoring: A string (see model evaluation documentation) or a scorer callable object/function.
Example:
Here’s an example using RepeatedKFold with cross_val_score for a simple regression model:
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_val_score, RepeatedKFold# Generate a sample dataset
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1)# Define the model
model = LinearRegression()# Define the evaluation procedure
cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=1)# Evaluate the model
scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1)# Summary of performance
print('Mean MAE: %.3f (%.3f)' % (np.mean(scores), np.std(scores)))
In the above example:
cross_val_scoreis used to evaluate the performance of aLinearRegressionmodel using the mean absolute error (MAE) metric.- We employ a 10-fold cross-validation strategy that is repeated 3 times, as specified by
RepeatedKFold. - The scores from all these repetitions and folds are aggregated into the
scoresarray.
Note:
- In the scoring parameter, the ‘neg_mean_absolute_error’ is used because in
sklearn, the convention is to maximize the score, so loss functions are represented with negative values (the closer to 0, the better).
torch.tensor类型数据
直接划分
基于TensorDataset
To split a tensor into training and validation sets, you can use the random_split method from torch.utils.data. This is particularly handy when you’re dealing with Dataset objects, but it can also be applied directly to tensors with a bit of wrapping.
Here’s how you can do it:
-
Wrap your tensor in a TensorDataset:
Before usingrandom_split, you might need to wrap your tensors in aTensorDatasetso they can be treated as a dataset. -
Use
random_splitto divide the dataset:
Therandom_splitfunction requires two arguments: the dataset you’re splitting and a list of lengths for each resulting subset.
Here’s an example using random_split:
import torch
from torch.utils.data import TensorDataset, random_split# Sample tensor data
X = torch.randn(1000, 10) # 1000 samples, 10 features each
Y = torch.randint(0, 2, (1000,)) # 1000 labels# Wrap tensors in a dataset
dataset = TensorDataset(X, Y)# Split into 80% training (800 samples) and 20% validation (200 samples)
train_size = int(0.8 * len(dataset))
val_size = len(dataset) - train_size
train_dataset, val_dataset = random_split(dataset, [train_size, val_size])print(len(train_dataset)) # 800
print(len(val_dataset)) # 200
Once you’ve split your data into training and validation sets, you can easily load them in batches using DataLoader if needed.
-
The
random_splitmethod does not actually make a deep copy of the dataset. Instead, it returnsSubsetobjects that internally have indices to access the original dataset. This makes the splitting operation efficient in terms of memory. -
Each time you call
random_split, the split will be different because the method shuffles the indices. If you want reproducibility, you should set the random seed usingtorch.manual_seed()before callingrandom_split.
The resulting subsets from random_split can be directly passed to DataLoader to create training and validation loaders:
from torch.utils.data import DataLoadertrain_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False)
This allows you to efficiently iterate over the batches of data during training and validation.
If you have a TensorDataset and you want to retrieve all the data pairs from it, you can simply iterate over the dataset. Each iteration will give you a tuple where each element of the tuple corresponds to a tensor in the TensorDataset.
Here’s an example:
import torch
from torch.utils.data import TensorDataset# Sample tensor data
X = torch.randn(100, 10) # 100 samples, 10 features each
Y = torch.randint(0, 2, (100,)) # 100 labels# Wrap tensors in a dataset
dataset = TensorDataset(X, Y)# Get all data pairs
data_pairs = [data for data in dataset]# If you want to get them separately
X_data, Y_data = zip(*data_pairs)# Convert back to tensors if needed
X_data = torch.stack(X_data)
Y_data = torch.stack(Y_data)print(X_data.shape) # torch.Size([100, 10])
print(Y_data.shape) # torch.Size([100])
In the code above:
- We first create a
TensorDatasetfrom sample data. - Then, we use list comprehension to retrieve all data pairs from the dataset.
- Finally, we separate the features and labels using the
zipfunction, and then convert them back to tensors.
The zip(*data_pairs) expression is a neat Python trick that involves unpacking and transposing pairs (or tuples) of data.
To break it down:
-
zipfunction: This is a built-in Python function that allows you to iterate over multiple lists (or other iterable objects) in parallel. For example, if you have two listsa = [1,2,3]andb = [4,5,6], callingzip(a,b)will yield pairs(1,4),(2,5), and(3,6). -
The
*unpacking operator: When used in a function call, it unpacks a list (or tuple) into individual elements. For instance, if you havefunc(*[1,2,3]), it’s the same as callingfunc(1,2,3).
When you use them together as in zip(*data_pairs), you’re doing the following:
- Unpacking the
data_pairs: This treats the list of tuples indata_pairsas separate arguments tozip. - Transposing with
zip: Since each element ofdata_pairsis a tuple of (X, Y), usingzipeffectively transposes the data, separating all the X’s from the Y’s.
Here’s a simple example to illustrate:
data_pairs = [(1, 'a'), (2, 'b'), (3, 'c')]
x_data, y_data = zip(*data_pairs)
print(x_data) # Outputs: (1, 2, 3)
print(y_data) # Outputs: ('a', 'b', 'c')
In the context of our previous discussion, this operation allowed us to efficiently separate the feature tensors from the label tensors in the TensorDataset.
基于切片方法
To split a PyTorch tensor into training and validation sets, you can use simple slicing. Here’s a straightforward way to do this:
- Decide on a split ratio (e.g., 80% training and 20% validation).
- Shuffle the tensor (optional, but often a good idea).
- Split the tensor based on the desired ratio.
Here’s an example using a 80-20 split:
import torch# Sample data
X = torch.randn(1000, 10) # 1000 samples, 10 features each
Y = torch.randint(0, 2, (1000,))# Shuffle data
indices = torch.randperm(X.size(0))
X = X[indices]
Y = Y[indices]# Split ratios
train_size = int(0.8 * X.size(0))
val_size = X.size(0) - train_size# Split data
X_train = X[:train_size]
Y_train = Y[:train_size]
X_val = X[train_size:]
Y_val = Y[train_size:]print(X_train.size())
print(Y_train.size())
print(X_val.size())
print(Y_val.size())
In this example:
- We first shuffled the data by generating a permutation of indices with
torch.randperm(). - We then split the data based on the desired ratio (in this case, 80-20).
- The resulting tensors (
X_train,Y_train,X_val,Y_val) represent the training and validation sets respectively.
This method works well when you have independent and identically distributed data. If you need to perform stratified sampling (e.g., you want to ensure the training and validation sets have similar class distributions), consider using utilities from libraries like scikit-learn to generate the splits, and then index into the PyTorch tensor using those splits.
The torch.randperm(n) function generates a random permutation of integers from 0 to n-1. This is particularly useful for shuffling data. Let’s break down the function torch.randperm(X.size(0)):
-
X.size(0):- This retrieves the size of the first dimension of tensor
X. - If
Xis a 2D tensor with shape[samples, features], thenX.size(0)will return the number of samples.
- This retrieves the size of the first dimension of tensor
-
torch.randperm(...):- This generates a tensor of random permutations of integers from
0ton-1, wherenis the input argument. - The result is effectively a shuffled sequence of integers in the range
[0, n-1].
- This generates a tensor of random permutations of integers from
In the context of splitting data into training and validation sets, the random permutation ensures that the data is shuffled randomly before the split, so that the training and validation sets are likely to be representative of the overall dataset.
交叉验证
To perform n-fold cross-validation on PyTorch tensor data, you can use the KFold class from sklearn.model_selection. Here’s a step-by-step guide:
- Convert the PyTorch tensor to numpy arrays using the
.numpy()method. - Use
KFoldfromsklearn.model_selectionto generate training and validation indices. - Use these indices to split your PyTorch tensor data into training and validation sets.
- Train and validate your model using these splits.
Let’s see a practical example:
import torch
from sklearn.model_selection import KFold# Sample tensor data
X = torch.randn(100, 10) # 100 samples, 10 features each
Y = torch.randint(0, 2, (100,)) # 100 labels# Convert tensor to numpy
X_np = X.numpy()
Y_np = Y.numpy()# Number of splits
n_splits = 5
kf = KFold(n_splits=n_splits)for train_index, val_index in kf.split(X_np):# Convert indices to tensortrain_index = torch.tensor(train_index)val_index = torch.tensor(val_index)X_train, X_val = X[train_index], X[val_index]Y_train, Y_val = Y[train_index], Y[val_index]# Now, you can train and validate your model using X_train, X_val, Y_train, Y_val
Note:
- The
KFoldclass provides indices which we then use to slice our tensor and obtain the respective training and validation sets. - In the example above, we’re performing a 5-fold cross-validation on the data. Each iteration provides a new training-validation split.
If you want to shuffle the data before splitting, you can set the shuffle parameter of KFold to True.
相关文章:
机器学习样本数据划分的典型Python方法
机器学习样本数据划分的典型Python方法 DateAuthorVersionNote2023.08.16Dog TaoV1.0完成文档撰写。 文章目录 机器学习样本数据划分的典型Python方法样本数据的分类Training DataValidation DataTest Data numpy.ndarray类型数据直接划分交叉验证基于KFold基于RepeatedKFold基…...
重建与突破,探讨全链游戏的现在与未来
全链游戏(On-Chain Game)是指将游戏内资产通过虚拟货币或 NFT 形式记录上链的游戏类型。除此以外,游戏的状态存储、计算与执行等皆被部署在链上,目的是为用户打造沉浸式、全方位的游戏体验,超越传统游戏玩家被动控制的…...
[C++] 模板template
目录 1、函数模板 1.1 函数模板概念 1.2 函数模板格式 1.3 函数模板的原理 1.4 函数模板的实例化 1.4.1 隐式实例化 1.4.2 显式实例化 1.5 模板参数的匹配原则 2、类模板 2.1 类模板的定义格式 2.2 类模板的实例化 讲模板之前呢,我们先来谈谈泛型编程&am…...
[vite] 项目打包后页面空白,配置了base后也不生效
记录下解决问题的过程和思路 首先打开看打包后的 dist/index.html 文件,和页面上的报错 这里就发现了第一个问题 报错的意思是 index.html中引用的 css文件 和 js文件 找不到 为了解决这个问题,在vite.config.js配置中,增加一项 base:./ …...
springboot整合kafka-笔记
springboot整合kafka-笔记 配置pom.xml 这里我的springboot版本是2.3.8.RELEASE,使用的kafka-mq的版本是2.12 <dependencyManagement><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>s…...
Rust软件外包开发语言的特点
Rust 是一种系统级编程语言,强调性能、安全性和并发性的编程语言,适用于广泛的应用领域,特别是那些需要高度可靠性和高性能的场景。下面和大家分享 Rust 语言的一些主要特点以及适用的场合,希望对大家有所帮助。北京木奇移动技术有…...
Spring Boot业务代码中使用@Transactional事务失效踩坑点总结
1.概述 接着之前我们对Spring AOP以及基于AOP实现事务控制的上文,今天我们来看看平时在项目业务开发中使用声明式事务Transactional的失效场景,并分析其失效原因,从而帮助开发人员尽量避免踩坑。 我们知道 Spring 声明式事务功能提供了极其…...
知识体系总结(九)设计原则、设计模式、分布式、高性能、高可用
文章目录 架构设计为什么要进行技术框架的设计 六大设计原则一、单一职责原则二、开闭原则三、依赖倒置原则四、接口分离原则五、迪米特法则(又称最小知道原则)六、里氏替换原则案例诠释 常见设计模式构造型单例模式工厂模式简单工厂工厂方法 生成器模式…...
Springboot 集成Beetl模板
一、在启动类下的pom.xml中导入依赖: <!--beetl模板引擎--><dependency><groupId>com.ibeetl</groupId><artifactId>beetl</artifactId><version>2.9.8</version></dependency> 二、 配置 beetl需要的Beetl…...
RabbitMQ查询队列使用情况和消费者详情实现
spring-boot-starter-amqp spring-boot-starter-amqp是Spring Boot框架中与AMQP(高级消息队列协议)相关的自动配置启动器。它提供了使用AMQP进行消息传递和异步通信的功能。 以下是spring-boot-starter-amqp的主要特性和功能: 自动配置:spring-boot-starter-amqp通过自动…...
Spark第二课RDD的详解
1.前言 RDD JAVA中的IO 1.小知识点穿插 1. 装饰者设计模式 装饰者设计模式:本身功能不变,扩展功能. 举例: 数据流的读取 一层一层的包装,进而将功能进行进一步的扩展 2.sleep和wait的区别 本质区别是字体不一样,sleep斜体,wait正常 斜体是静态方法…...
人工智能学习框架—飞桨Paddle人工智能
1.人工智能框架 机器学习的三要素:模型、学习策略、优化算法。 当我们用机器学习来解决一些模式识别任务时,一般的流程包含以下几个步骤: 1.1.浅层学习和深度学习 浅层学习(Shallow Learning):不涉及特征学习,其特征…...
SElinux 导致 Keepalived 检测脚本无法执行
哈喽大家好,我是咸鱼 今天我们来看一个关于 Keepalived 检测脚本无法执行的问题 一位粉丝后台私信我,说他部署的 keepalived 集群 vrrp_script 模块中的脚本执行失败了,但是手动执行这个脚本却没有任何问题 这个问题也是咸鱼第一次遇到&…...
2022年电赛C题——小车跟随行驶系统——做题记录以及经验分享
前言 自己打算将做过的电赛真题,主要包含控制组的,近几年出现的小车控制题目,自己做过的真题以及在准备电赛期间刷真题出现的问题以及经验分享给大家 这次带来的是22年电赛C题——小车跟随行驶系统,这道题目指定使用的是TI的单片…...
vscode + python
序 参考链接: 【教程】VScode中配置Python运行环境_哔哩哔哩_bilibili Python部分 Python Releases for Windows | Python.org vscode部分 Visual Studio Code - Code Editing. Redefined 一路next,全部勾上: 就可以了: 安装插…...
badgerdb里面的事务
事务的ACID A 原子性(Atomicity) 多步骤操作,只能是两种状态,要么所有的步骤都成功执行,要么所有的步骤都不执行,举例说明就是小明向小红转账30元的场景,拆分成两个步骤,步骤1&#…...
C# this.Invoke(new Action(() => { /* some code */ }))用法说明
在 C# 中,this.Invoke(new Action(() > { /* some code */ })) 是一种用于在 UI 线程上执行代码的方法,通常用于在后台线程中更新 UI 控件的值或执行其他需要在 UI 线程上执行的操作。 在 Windows Forms 或 WPF 等图形界面应用程序中,UI …...
MongoDB:MySQL,Redis,ES,MongoDB的应用场景
简单明了说明MySQL,ES,MongoDB的各自特点,应用场景,以及MongoDB如何使用的第一章节. 一. SQL与NoSQL SQL被称为结构化查询语言.是传统意义上的数据库,数据之间存在很明确的关联关系,例如主外键关联,这种结构可以确保数据的完整性(数据没有缺失并且正确).但是正因为这种严密的结…...
leetcode每日一题_2682.找出转圈游戏输家
2682.找出转圈游戏输家 题目: n 个朋友在玩游戏。这些朋友坐成一个圈,按 顺时针方向 从 1 到 n 编号。从第 i 个朋友的位置开始顺时针移动 1 步会到达第 (i 1) 个朋友的位置(1 < i < n),而从第 n 个朋友的位置开始顺时针移…...
OpenCV之薄板样条插值(ThinPlateSpline)
官方文档:OpenCV: cv::ThinPlateSplineShapeTransformer Class Reference 使用方法: 头文件:#include <opencv2/shape/shape_transformer.hpp> (1)点匹配 一般根据有多少个样本(或者点)…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...
在四层代理中还原真实客户端ngx_stream_realip_module
一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...
