从零实战SLAM-第九课(后端优化)
在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。
-------------------------------------------------------------------------------------------------------------------------------
后端的目标:从带噪声的数据估计内在状态——状态估计问题。主流方法分为两大类:
❑ 渐进式(Incremental/Recursive)
❑ 批量式(Batch)
其中,渐进式(Incremental/Recursive)的思想和主流方法如下:
➢ 保持当前状态的估计,在加入新信息时,更新已有的估计(滤波)
➢ 线性系统+高斯噪声=卡尔曼滤波器
➢ 非线性系统+高斯噪声+线性近似=扩展卡尔曼
➢ 非线性系统+非高斯噪声+非参数化=粒子滤波器
➢ Sliding window filter & multiple state Kalman(MSCKF)
批量式(Batch)的思路为:
➢ 给定一定规模的数据,计算该数据下的最优估计(优化)
渐进式的作用是根据观测的结果,修正自己对位姿的估计。没有观测,则随着机器人的移动,自身的位姿误差会越来越大。

与之前保持一致,xk表示位姿,zk表示观测

则k时刻的位姿,与原始位姿、运动序列和观测序列有关


这其中涉及到当前时刻与之前各时刻位姿之间的关系,一般分为两种:
➢ 假设𝑘时刻状态只和𝑘-1时刻有关
➢ 假设𝑘时刻状态与先前所有时刻均相关
常用第一种,也叫作马尔科夫性。
.
其中,卡尔曼滤波用在线性模型、高斯噪声的情况之下

高斯分布的线性变换,仍然属于高斯分布。

计算过程很复杂,最后只要记住这几个公式即可。

当运动函数与观测函数为非线性函数时,用一阶Taylor展开

分析的工具为扩展卡尔曼滤波

扩展卡尔曼滤波的优缺点
❑ Advantage
➢ 推导简单清楚,适用各种传感器形式
➢ 易于做多传感器融合
❑ Disadvantage
➢ 一阶马尔可夫性过于简单
➢ 可能会发散(要求数据不能有 outlier)
➢ 线性化误差
➢ 需要存储所有状态量的均值和方差,平方增长
批量法的思路

Bundle Adjustment问题与图结构的关系:
➢ BA虽然是个纯优化问题,但亦可以用图模型清晰地表述出来
➢ 顶点为优化变量,边为运动/观测约束
➢ 本身还有一些特殊的结构

BA使用高斯-牛顿或者L-M算法计算

这里的雅可比矩阵为一个稀疏阵。

目标函数与雅可比矩阵的情况

雅可比矩阵与H矩阵的稀疏性特点

图模型结构与H矩阵之间的映射关系

利用H矩阵的特点,可以加速计算过程。


迭代法与批量发之间的区别

在SLAM中使用Bundle Adjustment,用来做关键帧和地图的管理
批量方法:
➢ 用BA优化一部分图
➢ 其余的固定
递归方法:
➢ 保留一定数量的关键帧
➢ 使用BA来优化窗口内的关键帧
➢ 新的关键帧到来时,边缘化老的关键帧

位姿图与BA之间的关系
实际当中Bundle Adjustment的计算量很大:
➢ 通常放在单独的后台线程中计算而无法实时
➢ 主要计算来自于大量的特征点
Pose Graph 即是省略了特征点的 Bundle Adjustment。

位姿图的计算过程


相关文章:
从零实战SLAM-第九课(后端优化)
在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…...
Python Opencv实践 - 图像金字塔
import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料:https://blo…...
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C++)
Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...
计算机竞赛 python+大数据校园卡数据分析
0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于yolov5的深度学习车牌识别系统实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分工作量:4分创新点:3分 该项目较为新颖&am…...
DNNGP模型解读-early stopping 和 batch normalization的使用
一、考虑的因素(仅代表个人观点) 1.首先我们看到他的这篇文章所考虑的不同方面从而做出的不同改进,首先考虑到了对于基因组预测的深度学习方法的设计 ,我们设计出来这个方法就是为了基因组预测而使用,这也是主要目的&…...
【目标检测】目标检测 相关学习笔记
目标检测算法 PASCALVOC2012数据集 挑战赛主要分为 图像分类 目标检测 目标分割 动作识别 数据集分为四个大类 交通(飞机 船 公交车 摩托车) 住房(杯子 椅子 餐桌 沙发) 动物(鸟 猫 奶牛 狗 马 羊) 其他&a…...
面试攻略,Java 基础面试 100 问(十六)
反射使用步骤(获取Class对象、调用对象方法) 获取想要操作的类的Class对象,他是反射的核心,通过Class对象我们可以任意调用类的方法。 调用 Class 类中的方法,既就是反射的使用阶段。 使用反射 API 来操作这些信息。 什么是 java 序列化&…...
章节5:脚本注入网页-XSS
章节5:脚本注入网页-XSS XSS :Cross Site Script 恶意攻击者利用web页面的漏洞,插入一些恶意代码,当用户访问页面的时候,代码就会执行,这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…...
ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031)
安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) 二、CVE-2017-15031 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) Title 未初始化或保存/恢复PMCR_EL0可能会泄露安全世界的时间信息 CVE ID CVE-2017-1503…...
迅捷视频工具箱:多功能音视频处理软件
这是一款以视频剪辑、视频转换、屏幕录像等特色功能为主,同时附带有视频压缩、视频分割、视频合并等常用视频处理功能为主的视频编辑软件。该软件操作简单易用,即使没有视频处理经验的用户也可以轻松上手。将视频添加到工具箱对应功能后,简单…...
linux--fork()详解
fork() 参考链接:链接 进程控制原语包括:进程的建立、进程的撤销、进程的等待和进程的唤醒。 fork,在英语用译为叉子,形状像Y,反过来就如下图: 就是本来只有一个进行app,然后它调用了fork()函数…...
go_并发编程(1)
go并发编程 一、 并发介绍1,进程和线程2,并发和并行3,协程和线程4,goroutine 二、 Goroutine1,使用goroutine1)启动单个goroutine2)启动多个goroutine 2,goroutine与线程3࿰…...
第一百一十五回 权限管理包permission_handler
文章目录 概念介绍使用方法示例代码经验分享 我们在上一章回中介绍了局部动态列表相关的内容,本章回中将介绍权限管理包 permission_hanadler.闲话休提,让我们一起Talk Flutter吧。 概念介绍 权限是使用某种功能的授权,比如使用手机上的相机…...
【机器学习】sklearn数据集的使用,数据集的获取和划分
「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 sklearn数据集 二、安装sklearn二、获取数据集三、…...
Mysql之 optimizer_trace 相关总结
Mysql之 optimizer_trace 相关总结 MySQL官网介绍:https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_OPT_TRACE.html 1. 简介 MySQL优化器可以生成Explain执行计划,通过执行计划查看sql是否使用了索引,使用了哪种索; 但…...
【Linux命令详解 | wget命令】 wget命令用于从网络下载文件,支持HTTP、HTTPS和FTP协议
文章标题 简介一,参数列表二,使用介绍1. 基本文件下载2. 递归下载整个网站3. 限制下载速率4. 防止SSL证书校验5. 断点续传6. 指定保存目录7. 自定义保存文件名8. 增量下载9. 使用HTTP代理10. 后台下载 总结 简介 在编程世界中,处理网络资源是…...
DockePod信号处理机制与僵尸进程优化
Docke&Pod信号处理与僵尸进程优化 容器与信号的关系 SIGTERM信号:程序结束(terminate)信号,这是用来终止进程的标准信号,也是 kill 、 killall 、 pkill 命令所发送的默认信号。与SIGKILL不同的是该信号可以被阻塞和处理。通常用来要求程…...
NetApp StorageGRID 对象存储,使您能够跨公有、私有云和混合多云环境管理非结构化数据
NetApp StorageGRID 对象存储,使您能够跨公有、私有云和混合多云环境管理非结构化数据 主要优势 智能:了解行业领先的数据生命周期管理软件。 • 借助 NetApp StorageGRID 基于对象的存储解决方案的数据管理功能、您可以从大型非结构化数据中获得高价值…...
使用Java服务器实现UDP消息的发送和接收(多线程)
目录 简介:1. 导入必要的库2. 创建服务器端代码3. 创建客户端代码4. 实现多线程处理5. 测试运行示例代码:函数说明服务器端代码说明:客户端代码说明: 总结: 简介: 在本篇博客中,我们将介绍如何…...
Linux--查看端口占用情况
查看端口占用情况 在Linux使用过程中,需要了解当前系统开放了哪些端口,并且要查看开放这些端口的具体进程和用户,可以通过netstat命令进行简单查询 netstat命令各个参数说明如下: -t : 指明显示TCP端口 -u : 指明显示UDP…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
探索Selenium:自动化测试的神奇钥匙
目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现指南针功能
指南针功能是许多位置服务应用的基础功能之一。下面我将详细介绍如何在HarmonyOS 5中使用DevEco Studio实现指南针功能。 1. 开发环境准备 确保已安装DevEco Studio 3.1或更高版本确保项目使用的是HarmonyOS 5.0 SDK在项目的module.json5中配置必要的权限 2. 权限配置 在mo…...
网页端 js 读取发票里的二维码信息(图片和PDF格式)
起因 为了实现在报销流程中,发票不能重用的限制,发票上传后,希望能读出发票号,并记录发票号已用,下次不再可用于报销。 基于上面的需求,研究了OCR 的方式和读PDF的方式,实际是可行的ÿ…...
【版本控制】GitHub Desktop 入门教程与开源协作全流程解析
目录 0 引言1 GitHub Desktop 入门教程1.1 安装与基础配置1.2 核心功能使用指南仓库管理日常开发流程分支管理 2 GitHub 开源协作流程详解2.1 Fork & Pull Request 模型2.2 完整协作流程步骤步骤 1: Fork(创建个人副本)步骤 2: Clone(克隆…...
VSCode 使用CMake 构建 Qt 5 窗口程序
首先,目录结构如下图: 运行效果: cmake -B build cmake --build build 运行: windeployqt.exe F:\testQt5\build\Debug\app.exe main.cpp #include "mainwindow.h"#include <QAppli...
【记录坑点问题】IDEA运行:maven-resources-production:XX: OOM: Java heap space
问题:IDEA出现maven-resources-production:operation-service: java.lang.OutOfMemoryError: Java heap space 解决方案:将编译的堆内存增加一点 位置:设置setting-》构建菜单build-》编译器Complier...
Q1起重机指挥理论备考要点分析
Q1起重机指挥理论备考要点分析 一、考试重点内容概述 Q1起重机指挥理论考试主要包含三大核心模块:安全技术知识(占40%)、指挥信号规范(占30%)和法规标准(占30%)。考试采用百分制,8…...
