当前位置: 首页 > news >正文

从零实战SLAM-第九课(后端优化)

 在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。

-------------------------------------------------------------------------------------------------------------------------------

后端的目标:从带噪声的数据估计内在状态——状态估计问题。主流方法分为两大类:

❑ 渐进式(Incremental/Recursive)

❑ 批量式(Batch)

其中,渐进式(Incremental/Recursive)的思想和主流方法如下:

➢ 保持当前状态的估计,在加入新信息时,更新已有的估计(滤波)

➢ 线性系统+高斯噪声=卡尔曼滤波器

➢ 非线性系统+高斯噪声+线性近似=扩展卡尔曼

➢ 非线性系统+非高斯噪声+非参数化=粒子滤波器

➢ Sliding window filter & multiple state Kalman(MSCKF)

批量式(Batch)的思路为:

➢ 给定一定规模的数据,计算该数据下的最优估计(优化)

渐进式的作用是根据观测的结果,修正自己对位姿的估计。没有观测,则随着机器人的移动,自身的位姿误差会越来越大。

与之前保持一致,xk表示位姿,zk表示观测

则k时刻的位姿,与原始位姿、运动序列和观测序列有关

这其中涉及到当前时刻与之前各时刻位姿之间的关系,一般分为两种:

➢ 假设𝑘时刻状态只和𝑘-1时刻有关

➢ 假设𝑘时刻状态与先前所有时刻均相关

常用第一种,也叫作马尔科夫性。

.

其中,卡尔曼滤波用在线性模型、高斯噪声的情况之下

高斯分布的线性变换,仍然属于高斯分布。

计算过程很复杂,最后只要记住这几个公式即可。

当运动函数与观测函数为非线性函数时,用一阶Taylor展开

分析的工具为扩展卡尔曼滤波

扩展卡尔曼滤波的优缺点

❑ Advantage

➢ 推导简单清楚,适用各种传感器形式

➢ 易于做多传感器融合

❑ Disadvantage

➢ 一阶马尔可夫性过于简单

➢ 可能会发散(要求数据不能有 outlier)

➢ 线性化误差

➢ 需要存储所有状态量的均值和方差,平方增长

批量法的思路

Bundle Adjustment问题与图结构的关系:

➢ BA虽然是个纯优化问题,但亦可以用图模型清晰地表述出来

➢ 顶点为优化变量,边为运动/观测约束

➢ 本身还有一些特殊的结构

BA使用高斯-牛顿或者L-M算法计算

这里的雅可比矩阵为一个稀疏阵。

目标函数与雅可比矩阵的情况

雅可比矩阵与H矩阵的稀疏性特点

图模型结构与H矩阵之间的映射关系

利用H矩阵的特点,可以加速计算过程。

迭代法与批量发之间的区别

在SLAM中使用Bundle Adjustment,用来做关键帧和地图的管理

批量方法:

➢ 用BA优化一部分图

➢ 其余的固定

递归方法:

➢ 保留一定数量的关键帧

➢ 使用BA来优化窗口内的关键帧

➢ 新的关键帧到来时,边缘化老的关键帧

位姿图与BA之间的关系

实际当中Bundle Adjustment的计算量很大:

➢ 通常放在单独的后台线程中计算而无法实时

➢ 主要计算来自于大量的特征点

Pose Graph 即是省略了特征点的 Bundle Adjustment。

位姿图的计算过程

相关文章:

从零实战SLAM-第九课(后端优化)

在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…...

Python Opencv实践 - 图像金字塔

import cv2 as cv import numpy as np import matplotlib.pyplot as pltimg cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR) print(img.shape)#图像上采样 #cv.pyrUp(src, dstNone, dstsizeNone, borderTypeNone) #参考资料:https://blo…...

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C++)

Baumer工业相机堡盟工业相机如何通过BGAPI SDK设置相机的固定帧率(C) Baumer工业相机Baumer工业相机的固定帧率功能的技术背景CameraExplorer如何查看相机固定帧率功能在BGAPI SDK里通过函数设置相机固定帧率 Baumer工业相机通过BGAPI SDK设置相机固定帧…...

计算机竞赛 python+大数据校园卡数据分析

0 前言 🔥 优质竞赛项目系列,今天要分享的是 🚩 基于yolov5的深度学习车牌识别系统实现 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:4分工作量:4分创新点:3分 该项目较为新颖&am…...

DNNGP模型解读-early stopping 和 batch normalization的使用

一、考虑的因素(仅代表个人观点) 1.首先我们看到他的这篇文章所考虑的不同方面从而做出的不同改进,首先考虑到了对于基因组预测的深度学习方法的设计 ,我们设计出来这个方法就是为了基因组预测而使用,这也是主要目的&…...

【目标检测】目标检测 相关学习笔记

目标检测算法 PASCALVOC2012数据集 挑战赛主要分为 图像分类 目标检测 目标分割 动作识别 数据集分为四个大类 交通(飞机 船 公交车 摩托车) 住房(杯子 椅子 餐桌 沙发) 动物(鸟 猫 奶牛 狗 马 羊) 其他&a…...

面试攻略,Java 基础面试 100 问(十六)

反射使用步骤(获取Class对象、调用对象方法) 获取想要操作的类的Class对象,他是反射的核心,通过Class对象我们可以任意调用类的方法。 调用 Class 类中的方法,既就是反射的使用阶段。 使用反射 API 来操作这些信息。 什么是 java 序列化&…...

章节5:脚本注入网页-XSS

章节5:脚本注入网页-XSS XSS :Cross Site Script 恶意攻击者利用web页面的漏洞,插入一些恶意代码,当用户访问页面的时候,代码就会执行,这个时候就达到了攻击的目的。 JavaScript、Java、VBScript、Activ…...

ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031)

安全之安全(security)博客目录导读 ATF(TF-A)安全通告汇总 目录 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) 二、CVE-2017-15031 一、ATF(TF-A)安全通告 TFV-5 (CVE-2017-15031) Title 未初始化或保存/恢复PMCR_EL0可能会泄露安全世界的时间信息 CVE ID CVE-2017-1503…...

迅捷视频工具箱:多功能音视频处理软件

这是一款以视频剪辑、视频转换、屏幕录像等特色功能为主,同时附带有视频压缩、视频分割、视频合并等常用视频处理功能为主的视频编辑软件。该软件操作简单易用,即使没有视频处理经验的用户也可以轻松上手。将视频添加到工具箱对应功能后,简单…...

linux--fork()详解

fork() 参考链接:链接 进程控制原语包括:进程的建立、进程的撤销、进程的等待和进程的唤醒。 fork,在英语用译为叉子,形状像Y,反过来就如下图: 就是本来只有一个进行app,然后它调用了fork()函数&#xf…...

go_并发编程(1)

go并发编程 一、 并发介绍1,进程和线程2,并发和并行3,协程和线程4,goroutine 二、 Goroutine1,使用goroutine1)启动单个goroutine2)启动多个goroutine 2,goroutine与线程3&#xff0…...

第一百一十五回 权限管理包permission_handler

文章目录 概念介绍使用方法示例代码经验分享 我们在上一章回中介绍了局部动态列表相关的内容,本章回中将介绍权限管理包 permission_hanadler.闲话休提,让我们一起Talk Flutter吧。 概念介绍 权限是使用某种功能的授权,比如使用手机上的相机…...

【机器学习】sklearn数据集的使用,数据集的获取和划分

「作者主页」:士别三日wyx 「作者简介」:CSDN top100、阿里云博客专家、华为云享专家、网络安全领域优质创作者 「推荐专栏」:对网络安全感兴趣的小伙伴可以关注专栏《网络安全入门到精通》 sklearn数据集 二、安装sklearn二、获取数据集三、…...

Mysql之 optimizer_trace 相关总结

Mysql之 optimizer_trace 相关总结 MySQL官网介绍:https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_OPT_TRACE.html 1. 简介 MySQL优化器可以生成Explain执行计划,通过执行计划查看sql是否使用了索引,使用了哪种索; 但…...

【Linux命令详解 | wget命令】 wget命令用于从网络下载文件,支持HTTP、HTTPS和FTP协议

文章标题 简介一,参数列表二,使用介绍1. 基本文件下载2. 递归下载整个网站3. 限制下载速率4. 防止SSL证书校验5. 断点续传6. 指定保存目录7. 自定义保存文件名8. 增量下载9. 使用HTTP代理10. 后台下载 总结 简介 在编程世界中,处理网络资源是…...

DockePod信号处理机制与僵尸进程优化

Docke&Pod信号处理与僵尸进程优化 容器与信号的关系 SIGTERM信号:程序结束(terminate)信号,这是用来终止进程的标准信号,也是 kill 、 killall 、 pkill 命令所发送的默认信号。与SIGKILL不同的是该信号可以被阻塞和处理。通常用来要求程…...

NetApp StorageGRID 对象存储,使您能够跨公有、私有云和混合多云环境管理非结构化数据

NetApp StorageGRID 对象存储,使您能够跨公有、私有云和混合多云环境管理非结构化数据 主要优势 智能:了解行业领先的数据生命周期管理软件。 • 借助 NetApp StorageGRID 基于对象的存储解决方案的数据管理功能、您可以从大型非结构化数据中获得高价值…...

使用Java服务器实现UDP消息的发送和接收(多线程)

目录 简介:1. 导入必要的库2. 创建服务器端代码3. 创建客户端代码4. 实现多线程处理5. 测试运行示例代码:函数说明服务器端代码说明:客户端代码说明: 总结: 简介: 在本篇博客中,我们将介绍如何…...

Linux--查看端口占用情况

查看端口占用情况 在Linux使用过程中,需要了解当前系统开放了哪些端口,并且要查看开放这些端口的具体进程和用户,可以通过netstat命令进行简单查询 netstat命令各个参数说明如下:   -t : 指明显示TCP端口   -u : 指明显示UDP…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

NFT模式:数字资产确权与链游经济系统构建

NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

Spring AI与Spring Modulith核心技术解析

Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...