机器学习算法之-逻辑回归(2)
为什么需要逻辑回归
拟合效果太好
特征与标签之间的线性关系极强的数据,比如金融领域中的 信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更好,也被许多数据咨询公司启用,但逻辑回归在金融领域,尤其是银行业中的统治地位依然不可动摇(相对的,逻辑回归在非线性数据的效果很多时候比瞎猜还不如,所以如果你已经知道数据之间的联系是非线性的,千万不要迷信逻辑回归);
逻辑回归计算快
对于线性数据,逻辑回归的拟合和计算都非常快,计算效率优于SVM和随机森林,亲测表 示在大型数据上尤其能够看得出区别
逻辑回归返回的分类结果不是固定的0,1,而是以小数形式呈现的类概率数字
我们因此可以把逻辑回归返回的结果当成连续型数据来利用。比如在评分卡制作时,我们不仅需要判断客户是否会违约,还需要给出确定的”信用分“,而这个信用分的计算就需要使用类概率计算出的对数几率,而决策树和随机森林这样的分类器,可以产出分类结果,却无法帮助我们计算分数(当然,在sklearn中,决策树也可以产生概率,使用接口 predict_proba调用就好,但一般来说,正常的决策树没有这个功能)。
sklearn中的逻辑回归

相关文章:
机器学习算法之-逻辑回归(2)
为什么需要逻辑回归 拟合效果太好 特征与标签之间的线性关系极强的数据,比如金融领域中的 信用卡欺诈,评分卡制作,电商中的营销预测等等相关的数据,都是逻辑回归的强项。虽然现在有了梯度提升树GDBT,比逻辑回归效果更…...
【业务功能篇65】maven加速 配置settings.xml文件 镜像
maven加速 添加阿里镜像仓 <?xml version"1.0" encoding"UTF-8"?><!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additi…...
题目:售货员的难题(状压dp)
售货员的难题 题目描述输入输出格式输入格式:输出格式: 输入输出样例输入样例#1:输出样例#1: 思路AC代码: 题目描述 某乡有n个村庄( 1 < n < 16 ),有一个售货员,他要到各个村庄去售货&am…...
Linux 的 MySQL 5.x - 关于 Windows 10 的 Navicat Premium 导入 Excel (.xlsx)文件,报错问题集锦
问题 [ERR] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:01’ for column ‘xxx_time’ 解决方法: Windows 则是 my.ini Linux 系统则是 /etc/my.cnf 修改my.ini配置文件,建议修改前新备份下, my.ini中查找sql-mode࿰…...
基于IP网络的存储协议——iSCSI
文章首发地址 iSCSI(Internet Small Computer System Interface)是一种基于IP网络的存储协议,它能够在TCP/IP网络上实现SCSI协议,使得不同的主机可以通过网络共享存储设备。iSCSI可以将存储设备映射到本地主机上,使得主…...
神经网络基础-神经网络补充概念-27-深层网络中的前向传播
概念 深层神经网络中的前向传播是指从输入数据开始,逐层计算每个神经元的输出值,直到得到最终的预测值。 一般步骤 1输入数据传递: 将输入数据传递给网络的输入层。输入数据通常是一个特征矩阵,每一列代表一个样本,…...
用cpolar生成的公网地址,对位于本地的Cloudreve网盘进行访问
文章目录 1、前言2、本地网站搭建2.1 环境使用2.2 支持组件选择2.3 网页安装2.4 测试和使用2.5 问题解决 3、本地网页发布3.1 cpolar云端设置3.2 cpolar本地设置 4、公网访问测试5、结语 1、前言 自云存储概念兴起已经有段时间了,各互联网大厂也纷纷加入战局&#…...
docker compose部署zookeeper
单机部署 新建docker-compose.yaml version: 3 services:zookeeper:image: zookeeper:3.5.7container_name: base-zookeeperhostname: zookeeperprivileged: truerestart: alwaysports:- 2181:2181environment:TZ: "Asia/Shanghai"volumes:- ./volumes/zookeeper/d…...
【SA8295P 源码分析】77 - QNX Camera 之 ais_server 服务 源码分析
【SA8295P 源码分析】77 - QNX Camera 之 ais_server 服务 源码分析 一、QNX 侧 AIS 摄像头服务启动命令1.1 ais_server:在 ifs_camera.img 中启动1.2 ais_be_server:在 startup.sh 中启动二、ais_server 源码分析2.1 ais_server 编译脚本分析2.2 ais_server.c:监听 ais_cli…...
内网搭建电影网站的实现和进行公网访问
如何实现内网搭建电影网站并进行公网访问 文章目录 如何实现内网搭建电影网站并进行公网访问前言1. 把软件分别安装到本地电脑上1.1 打开PHPStudy软件,安装一系列电影网站所需的支持软件1.2 设置MacCNS10的运行环境1.3 进入电影网页的安装程序1.4 对运行环境进行检测…...
5.4 常用滤波算法
文章目录 代码filter.cfilter.h 代码 filter.c #include <stdio.h> #include "stm32f429xx.h" #include <string.h> /* 限幅滤波A方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A),每…...
【算法系列篇】双指针
文章目录 前言什么是双指针算法1.移动零1.1 题目要求1.2 做题思路1.3 Java代码实现 2.复写零2.1 题目要求2.2 做题思路2.3 Java代码实现 3.快乐数3.1 题目要求3.2 做题思路3.3 Java代码实现 4.盛最多水的容器4.1 题目要求4.2 做题思路4.3 Java代码实现 5.有效三角形的个数5.1 题…...
Web和云开发,Rust会起飞?
Web和云开发,Rust会起飞? 一、前言 二、大厂偏爱,Rust的未来 三、Rust做Web的雄心 四、有必要换Rust做Web? 1.效率和性能 2.可靠性和可维护性 五、Rust先苦后甜 六、用Rust前的几个问题 七、开发界的强者 一、前言 去年…...
深度学习项目学习
文章目录 torchvisiontorchvision.transforms.Compose()类 DataLoader类torch.nntorch.nn.Moudletorch.nn.Sequential模型容器nn.CrossEntropyLoss()交叉熵损失函数 numpynumpy.random. shuffle(x) torchvision torchvision和pytorch的关系: torchvision是PyTorch的…...
【3Ds Max】弯曲命令的简单使用
简介 在3ds Max中,"弯曲"(Bend)是一种用于在平面或曲面上创建弯曲效果的建模命令。使用弯曲命令,您可以将对象沿特定轴向弯曲,从而创建出各种弯曲的几何形状。以下是使用3ds Max中的弯曲命令的基本步骤&…...
opencv基础:几个常用窗口方法
开始说了一些opencv中的一些常用方法。 namedWindow方法 在OpenCV中,namedWindow函数用于创建一个窗口,并给它指定一个名字。这个函数的基本语法如下: import cv2cv2.namedWindow(窗口名称, 标识 )窗口名称:其实窗口名称&…...
web后端解决跨域问题
目录 什么是跨域问题 为什么限制访问 解决 什么是跨域问题 域是指从一个域名的网页去请求另一个域名的资源。比如从www.baidu.com 页面去请求 www.google.com 的资源。但是一般情况下不能这么做,它是由浏览器的同源策略造成的,是浏览器对js施加的安全…...
06 json数据解析和列表控件
内容回顾 json数据解析 json ----- 对要传输的数据进行封装的工具 json是由json数组([]) 和 json对象({})在qt中,对JSON数据进行处理(解析和打包) JSON数据处理所要包含的类: QJsonDocument -----它的作用是将数据转换成json文档 QJsonArray ---- json数组,就是封装多个…...
分布式 - 消息队列Kafka:Kafka生产者架构和配置参数
文章目录 1. kafka 生产者发送消息整体架构2. Kafka 生产者重要参数配置01. acks02. 消息传递时间03. linger.ms04. buffer.memory05. batch.size06. max.in.flight.requests.per.connection07. compression.type08. max.request.size09. receive.buffer.bytes和 send.buffer.b…...
MAUI+Blazor:windows 打包踩坑
文章目录 前言MSIX安装文件如何发布选择Windows平台旁加载自定义签名版本号安装 总结 前言 最近打算研究一下MAUIBlazor,争取在今年年底之前彻底搞懂MAUIBlazor的安装模式, MSIX安装文件 Windows 4种安装程序格式MSI,EXE、AppX和MSIX优缺点…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
渲染学进阶内容——模型
最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
