当前位置: 首页 > news >正文

P1006 [NOIP2008 提高组] 传纸条

P1006 [NOIP2008 提高组] 传纸条

    • 题目描述
    • 输入格式
    • 输出格式
    • 样例 #1
      • 样例输入 #1
      • 样例输出 #1
    • 提示
  • 思路
    • 四维dp
    • 三维dp
  • AC四维代码:
  • AC三维代码:

题目描述

小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题。一次素质拓展活动中,班上同学安排坐成一个 m m m n n n 列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了。幸运的是,他们可以通过传纸条来进行交流。纸条要经由许多同学传到对方手里,小渊坐在矩阵的左上角,坐标 ( 1 , 1 ) (1,1) (1,1),小轩坐在矩阵的右下角,坐标 ( m , n ) (m,n) (m,n)。从小渊传到小轩的纸条只可以向下或者向右传递,从小轩传给小渊的纸条只可以向上或者向左传递。

在活动进行中,小渊希望给小轩传递一张纸条,同时希望小轩给他回复。班里每个同学都可以帮他们传递,但只会帮他们一次,也就是说如果此人在小渊递给小轩纸条的时候帮忙,那么在小轩递给小渊的时候就不会再帮忙。反之亦然。

还有一件事情需要注意,全班每个同学愿意帮忙的好感度有高有低(注意:小渊和小轩的好心程度没有定义,输入时用 0 0 0 表示),可以用一个 [ 0 , 100 ] [0,100] [0,100] 内的自然数来表示,数越大表示越好心。小渊和小轩希望尽可能找好心程度高的同学来帮忙传纸条,即找到来回两条传递路径,使得这两条路径上同学的好心程度之和最大。现在,请你帮助小渊和小轩找到这样的两条路径。

输入格式

第一行有两个用空格隔开的整数 m m m n n n,表示班里有 m m m n n n 列。

接下来的 m m m 行是一个 m × n m \times n m×n 的矩阵,矩阵中第 i i i j j j 列的整数表示坐在第 i i i j j j 列的学生的好心程度。每行的 n n n 个整数之间用空格隔开。

输出格式

输出文件共一行一个整数,表示来回两条路上参与传递纸条的学生的好心程度之和的最大值。

样例 #1

样例输入 #1

3 3
0 3 9
2 8 5
5 7 0

样例输出 #1

34

提示

【数据范围】

对于 30 % 30\% 30% 的数据,满足 1 ≤ m , n ≤ 10 1 \le m,n \le 10 1m,n10
对于 100 % 100\% 100% 的数据,满足 1 ≤ m , n ≤ 50 1 \le m,n \le 50 1m,n50

【题目来源】

NOIP 2008 提高组第三题。

思路

四维dp

这题就是说要找到两条互不重合的两条最大线路。虽然说一个是从左上角出发,一个是从右下角出发,不过其实两个都从左上角出发就行了,这样比较好思考,也比较好写
一眼看过去,dp!!!最好想到的就是四维dp
d p [ i ] [ j ] [ u ] [ v ] dp[i][j][u][v] dp[i][j][u][v]表示第一条线路到达了 ( i , j ) (i,j) i,j,第二条线路到达了 ( u , v ) (u,v) (u,v)
当然,两条线路不能走到同一个点,所以在循环 i , j , u , v i,j,u,v i,j,u,v时, v v v要从 j + 1 j+1 j+1开始,
或者判断当两个点重合时, d p [ i ] [ j ] [ u ] [ v ] dp[i][j][u][v] dp[i][j][u][v]减去一个人的好心程度

四维的状态转移方程比较好想:

 f[i][j][k][l]=max( f[i][j-1][k-1][l] , max(f[i-1][j][k][l-1] , max(f[i][j-1][k][l-1] , f[i-1][j][k-1][l]) ) )+a[i][j]+a[k][l]

a是输入的好心程度!!!

怎么样?很简单吧?
不过当数据再大一点的时候就不能用四维的了,这个 1 ≤ m , n ≤ 50 1≤m,n≤50 1m,n50着实有点水,所以我们要用三维的,当然三维的也很好理解哦

三维dp

我们可以发现:两条线路走的总步数是一样的(即 i + j i+j i+j等于 u + v u+v u+v),所以我们可以只枚举两条线路的纵坐标或者横坐标就可以了。(我枚举的是横坐标)

那么我们现在的 d p [ k ] [ i ] [ j ] dp[k][i][j] dp[k][i][j]就表示一共走了k步,第一条线路在第i列上,第二条线路在第j列上时的最大好心程度
注意!!!dp数组的第一维要开到 n + m n+m n+m以上,因为这个棋矩阵最多可以走到大概 n + m n+m n+m
那么我们的状态转移方程为:

dp[k][i][j]=max_(dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i-1][j],dp[k-1][i][j-1])+a[i][k-i]+a[j][k-j];

max_ 是一个函数,就是求着四个数的最大值不过你也可以写三个max
其中:
d p [ k − 1 ] [ i − 1 ] [ j − 1 ] dp[k-1][i-1][j-1] dp[k1][i1][j1]表示:在上一步时两条线路都向下移动;
d p [ k − 1 ] [ i ] [ j ] dp[k-1][i][j] dp[k1][i][j]表示:在上一步时两条线路都向右移动;
d p [ k − 1 ] [ i − 1 ] [ j ] dp[k-1][i-1][j] dp[k1][i1][j]表示:在上一步时一条向下,一条向右;
d p [ k − 1 ] [ i ] [ j − 1 ] dp[k-1][i][j-1] dp[k1][i][j1]表示:在上一步时一条向右,一条向下;
a a a数组为输入的好心程度

差不多就这样,是不是很简单?看看代码吧:

含有注释,放心食用:

AC四维代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 55
using namespace std;
int a[N][N],f[N][N][N][N];
void work(int i,int j,int k,int l)
{int Max=0;Max=max(Max,f[i-1][j][k-1][l]);//这里可以合并,看个人喜好 Max=max(Max,f[i-1][j][k][l-1]);Max=max(Max,f[i][j-1][k-1][l]);Max=max(Max,f[i][j-1][k][l-1]);f[i][j][k][l]=Max+a[i][j];if(i!=k||j!=l)//去重,因为题目不允许走到同一个点 f[i][j][k][l]+=a[k][l];
}
int main()
{int m,n,i,j,k,l;scanf("%d%d",&m,&n);for(i=1;i<=m;++i)for(j=1;j<=n;++j)scanf("%d",&a[i][j]);for(i=1;i<=m;++i)for(j=1;j<=n;++j)for(u=1;u<=m;++u)for(v=1;v<=n;++v)work(i,j,u,v);printf("%d",f[m][n][m][n]);return 0;
}

AC三维代码:

#include<bits/stdc++.h>
using namespace std;
int n,m,a[101][101],dp[201][101][101];
int max_(int a,int b,int c,int d){return max(a,max(b,max(c,d)));//求最大的 
}
int main()
{cin>>n>>m;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>a[i][j];}}for(int k=2;k<=n+m;k++){//枚举步数 for(int i=1;i<=n;i++){//枚举横坐标 for(int j=1;j<=n;j++){//枚举横坐标 int l1=k-i,l2=k-j;if(l1<1||l1>m||l2<1||l2>m) continue;int t=a[i][l1];if(i!=j) t+=a[j][l2];//如果没有重复就加上 dp[k][i][j]=max_(dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i-1][j],dp[k-1][i][j-1]);//求最大的 (函数) dp[k][i][j]+=t;//加上当前位置的好心程度 }}}cout<<dp[n+m][n][n];//输出 return 0;
}

相关文章:

P1006 [NOIP2008 提高组] 传纸条

P1006 [NOIP2008 提高组] 传纸条 题目描述输入格式输出格式样例 #1样例输入 #1样例输出 #1 提示 思路四维dp三维dp AC四维代码&#xff1a;AC三维代码&#xff1a; 题目描述 小渊和小轩是好朋友也是同班同学&#xff0c;他们在一起总有谈不完的话题。一次素质拓展活动中&#…...

杭电比赛总结

我们的队伍&#xff1a;team013 另外两队&#xff1a;team014、team015 ​ 今天是我第一次打杭电&#xff0c;发现杭电多数都是猜结论题 先给一下我们的提交数据 Submit TimeProblem IDTimeMemoryJudge Status4:59:59101115 MS1692 KWrong Answer4:59:55101115 MS1684 KWrong…...

dom靶场

靶场下载地址&#xff1a; https://www.vulnhub.com/entry/domdom-1,328/ 一、信息收集 获取主机ip nmap -sP 192.168.16.0/24netdiscover -r 192.168.16.0/24端口版本获取 nmap -sV -sC -A -p 1-65535 192.168.16.209开放端口只有80 目录扫描 这里扫描php后缀的文件 g…...

go struct 的常见问题

go struct 的常见问题 1. 什么是struct&#xff1f;2. 如何声明、定义和创建一个struct&#xff1f;3. struct和其他数据类型&#xff08;如数组、切片、map等&#xff09;有什么区别&#xff1f;4. 如何访问struct字段&#xff1f;5. struct是否支持继承&#xff0c;是否支持重…...

Linux系统下的性能分析命令

在 Linux 系统下&#xff0c;有许多用于性能分析和调试的命令和工具&#xff0c;可以帮助您识别系统瓶颈、优化性能以及调查问题。本文将介绍在性能分析过程中&#xff0c;可能使用到的一些命令。 以下是一些常用的性能分析命令和工具汇总&#xff1a; 命令功能简述top用于实…...

第十三课:QtCmd 命令行终端应用程序开发

功能描述&#xff1a;开发一个类似于 Windows 命令行提示符或 Linux 命令行终端的应用程序 一、最终演示效果 QtCmd 不是因为它是 Qt 的组件&#xff0c;而是采用 Qt 开发了一个类似 Windows 命令提示符或者 Linux 命令行终端的应用程序&#xff0c;故取名为 QtCmd。 上述演示…...

Jmeter进阶使用:BeanShell实现接口前置和后置操作

一、背景 我们使用Jmeter做压力测试或者接口测试时&#xff0c;除了最简单的直接对接口发起请求&#xff0c;很多时候需要对接口进行一些前置操作&#xff1a;比如提前生成测试数据&#xff0c;以及一些后置操作&#xff1a;比如提取接口响应内容中的某个字段的值。举个最常用…...

【知识分享】高防服务器的防御机制

【知识分享】高防服务器的防御机制 易受到攻击的网站选择接入高防服务更安全&#xff0c;大家对于这个都清楚!但是对于高防服务如何实现防御来保障安全的&#xff0c;又了解多少呢?今天壹基比小源&#xff08;贰伍壹叁壹叁壹贰玖捌&#xff09;就来说说高防服务实现防御的常规…...

内网穿透-外远程连接中的RabbitMQ服务

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…...

驱动DAY4 字符设备驱动分步注册和ioctl函数点亮LED灯

头文件 #ifndef __HEAD_H__ #define __HEAD_H__ typedef struct{unsigned int MODER;unsigned int OTYPER;unsigned int OSPEEDR;unsigned int PUPDR;unsigned int IDR;unsigned int ODR; }gpio_t; #define PHY_LED1_ADDR 0X50006000 #define PHY_LED2_ADDR 0X50007000 #d…...

Python爬虫——scrapy_当当网图书管道封装

创建爬虫项目 srcapy startproject scrapy_dangdang进入到spider文件里创建爬虫文件&#xff08;这里爬取的是青春文学&#xff0c;仙侠玄幻分类&#xff09; srcapy genspider dang http://category.dangdang.com/cp01.01.07.00.00.00.html获取图片、名字和价格 # 所有的se…...

Linux下如何修改CPU 电源工作模式

最近处理一起历史遗留问题&#xff0c;感觉很爽。 现象&#xff1a; 背景&#xff1a;设备采用ARM&#xff0c;即rk3568处理器&#xff0c;采用Linux系统&#xff1b;主要用于视觉后端处理 现象&#xff1a;当软件运行一段时间&#xff0c;大概1个小时&#xff08;也不是很固定…...

Effective C++学习笔记(8)

目录 条款49&#xff1a;了解new-handler的行为条款50&#xff1a;了解new和delete的合理替换时机条款51&#xff1a;编写new和delete时需固守常规条款52&#xff1a;写了placement new也要写placement delete条款53&#xff1a;不要轻忽编译器的警告条款54&#xff1a;让自己熟…...

学校如何公布录取情况表?这个不用技术的方法,小白老师都能轻松制作

作为一名教师&#xff0c;我深切了解学生和家长们对录取情况的关注和重视。为了满足他们的需求&#xff0c;我们学校一直致力于改进公布录取情况的方式和效果。在本篇文章中&#xff0c;我将向您介绍我们学校独特的录取查询系统&#xff0c;并分享我们选择这种方式的原因。 我…...

Chart GPT免费可用地址共享资源

GPT4.0&#xff1a; https://gpt4e.ninvfeng.xyz github:https://github.com/ninvfeng/chatgpt4 WeUseAi&#xff1a;https://chatb.weuseai.pro AI.LS&#xff1a;https://n7.gpt03.xyz ChatX (iOS/macOS应用)&#xff1a;https://itunes.apple.com/app/id6446304087 ch…...

设计模式十八:中介者模式(Mediator Pattern)

在中介者模式中&#xff0c;多个对象之间不再直接相互通信&#xff0c;而是通过一个中介者对象进行通信。这可以减少对象之间的依赖关系&#xff0c;使系统更加模块化。中介者模式适用于当对象之间的通信逻辑变得复杂&#xff0c;导致代码难以维护和理解时。 中介者模式使用场…...

神经网络基础-神经网络补充概念-12-向量化逻辑回归的梯度输出

代码实现 import numpy as npdef sigmoid(z):return 1 / (1 np.exp(-z))def compute_loss(X, y, theta):m len(y)h sigmoid(X.dot(theta))loss (-1/m) * np.sum(y * np.log(h) (1 - y) * np.log(1 - h))return lossdef compute_gradient(X, y, theta):m len(y)h sigmoi…...

2023-08-16力扣每日一题

链接&#xff1a; 2682. 找出转圈游戏输家 题意&#xff1a; 环形1到n&#xff0c;从1开始&#xff0c;每次移动 第i次*k &#xff0c;当移动到出现过的序号时停下&#xff0c; 求没移动到的数字 解&#xff1a; 简单模拟题&#xff0c;我也以为有数学做法&#xff0c;可…...

耗资170亿美元?三星电子在得克萨斯州建设新的半导体工厂

据报道&#xff0c;三星电子在得克萨斯州泰勒市建设的新的半导体工厂预计将于2024年下半年投入运营。这座工厂将成为三星电子在美国的第二座芯片代工厂&#xff0c;与位于得克萨斯州奥斯汀市的第一座工厂相距不远。 此次投资将耗资约170亿美元&#xff0c;显示了三星电子在半导…...

黑马项目一阶段面试58题 Web14题(一)

一、什么是AJAX 异步的JavaScript和XML。用来做前端和后端的异步请求的技术。 异步请求&#xff1a;只更新部分前端界面的请求&#xff0c;做到局部更新。 比如注册&#xff0c;提示用户名已存在而整个页面没有动 比如百度图片搜索美女&#xff0c;进度条越变越短&#xff…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【网络】每天掌握一个Linux命令 - iftop

在Linux系统中&#xff0c;iftop是网络管理的得力助手&#xff0c;能实时监控网络流量、连接情况等&#xff0c;帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...

【C++】纯虚函数类外可以写实现吗?

1. 答案 先说答案&#xff0c;可以。 2.代码测试 .h头文件 #include <iostream> #include <string>// 抽象基类 class AbstractBase { public:AbstractBase() default;virtual ~AbstractBase() default; // 默认析构函数public:virtual int PureVirtualFunct…...