【Sklearn】基于AdaBoost算法的数据分类预测(Excel可直接替换数据)
【Sklearn】基于AdaBoost算法的数据分类预测(Excel可直接替换数据)
- 1.模型原理
- 2.模型参数
- 3.文件结构
- 4.Excel数据
- 5.下载地址
- 6.完整代码
- 7.运行结果
1.模型原理
AdaBoost(Adaptive Boosting)是一种集成学习算法,它通过组合多个弱分类器来构建一个更强大的分类器。下面是AdaBoost分类模型的基本原理和数学公式:
原理:
- AdaBoost使用一系列弱分类器(通常是决策树)来进行分类,这些弱分类器可以是任意的,通常是针对训练数据集的分类效果并不好的分类器。
- 在每一轮迭代中,AdaBoost会为训练数据赋予不同的权重,将上一轮分类错误的样本权重提高,以便下一轮的分类器更关注这些错误分类的样本。
- 在每一轮中,会选择一个在当前数据分布下表现最好的弱分类器,加权分类结果。
- 最终的分类器是所有弱分类器的线性组合,每个弱分类器的权重取决于它的分类准确性。
数学公式:
假设我们有一个训练数据集 (
相关文章:
【Sklearn】基于AdaBoost算法的数据分类预测(Excel可直接替换数据)
【Sklearn】基于AdaBoost算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 AdaBoost(Adaptive Boosting)是一种集成学习算法,它通过组合多个弱分类器来构建一个更强大的分类器。下面是AdaBo…...

Docker+Selenium Grid搭建自动化测试平台
安装docker yum install -y yum-utils device-mapper-persistent-data lvm2 yum-config-manager –add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo yum install docker-ce -y Create a Docker Network docker network create grid 下载镜像 hu…...
Django图书商城系统实战开发-总结经验之后端开发
Django图书商城系统实战开发-总结经验之后端开发 简介 在这篇博客中,我将总结经验分享后端开发Django图书商城系统的过程。在开发过程中,我遇到了各种挑战和问题,并且通过实践获得了宝贵的经验和教训。通过本文,我希望能帮助读者…...

LeetCode[1288]删除被覆盖区间
难度:Medium 题目: 给你一个区间列表,请你删除列表中被其他区间所覆盖的区间。 只有当 c < a 且 b < d 时,我们才认为区间 [a,b) 被区间 [c,d) 覆盖。 在完成所有删除操作后,请你返回列表中剩余区间的数目。 示…...

QT connect使用简单介绍
如图,首先 connect是线程安全的。其次它有很多重载,当然最重要的还是QT4连接和QT5连接的区别,这个函数重载表示connect函数也是支持lambda函数的。 connect(const QObject *sender, PointerToMemberFunction signal, Functor functor)connec…...

【云原生】kuberneter中Helm入门到实践
引言 helm是k8s的包管理工具,使用helm,可以使用更为简化和系统化的方式对k8s应用进行部署、升级。 helm是CNCF已毕业的项目,社区也是相当活跃的,在 https://artifacthub.io/ 上,能找到很多现成的helm chartÿ…...
编译鸿蒙codelabs安装时报错
学习鸿蒙ArkTS时编译codelabs样例代码,发现编译完成报错。目前鸿蒙的资料比较少,且官方文档路径很深,遂记录下来,以资来者。 error: failed to start ability. Error while Launching activity修改module.json5中的exported为tru…...

设计模式
本文主要介绍设计模式的主要设计原则和常用设计模式。 一、UML画图 1.类图 2.时序图 二、设计模式原则 1.单一职责原则 就是一个方法、一个类只做一件事; 2.开闭原则 就是软件的设计应该对拓展开放,对修改关闭,这在java中体现最明显的就…...

用gdal库读取tif影像并填充边缘,并根据窗口大小滑动裁剪裁剪(包含gdal转PIL)
相关文章 PIL,OPENCV之间的转换关系_pil cvtcolor(image)_番茄就要炒鸡蛋的博客-CSDN博客 python GDAL和PIL图像转换_gdal.readasarray和pil_llc的足迹的博客-CSDN博客 一、原始数据 二、分别读取数据 1、gdal读取的array 2、pil读取的array 三、 gdal转pil image …...

sqlserver数据库导出到mysql
爱到分才显珍贵,很多人都不懂珍惜拥有,只到失去才看到,其实那最熟悉的才最珍贵的。 这里只介绍一种方式,有很多的方式。 1.使用Navicat 安装 下载 2.工具 数据传输 3.选择源和目标 然后开始 4.最好导入前备份一下库...

【抓包工具】whistle抓包工具分享
一、使用场景 抓包请求转发 二、基础篇 官网:http://wproxy.org/whistle/ github: https://github.com/avwo/whistle 简介: whistle(读音[ˈwɪsəl],拼音[wēisǒu])基于Node实现的跨平台web调试代理工具,类似的工具有Window…...

docker可视化工具Portainer
1:Portainer简介 Portainer是一个docker可视化管理工具,可以非常方便地管理docker镜像容器。官网地址:https://www.portainer.io/ 注:现在Portainer有BE(收费)和CE(免费)版本,安装的…...

售后服务管理系统哪家好?云部署的售后服务软件有什么优势?
如今,越来越多的企业开始利用数字化系统来监控他们建造、操作或维护的高科技设备的技术属性。然而,仍然有很多公司依赖于孤立的低技术解决方案,比如使用Excel电子表格和手动流程来管理工作。当然,对于一家公司来说,寻找…...

laravel-admin之 解决上传图片不显示 $form->image(‘image‘); 及 $grid->column(‘image‘);
参考 https://blog.csdn.net/u013164285/article/details/106017464 $grid->column(‘image’)->image(‘http://wuyan.cn’, 100, 100); // //设置服务器和宽高 图片上传的域名 上传的图片不显示 在 这里设置了图片的上传路径 在这里设置 域名 就可以回显图片...

运营商三要素 API:构建安全高效的身份验证系统
当今数字化的世界中,身份验证是各行各业中至关重要的一环。为了保护用户的隐私和数据安全,企业需要寻求一种既安全可靠又高效便捷的身份验证方式。运营商三要素 API 应运而生,为构建安全高效的身份验证系统提供了有力的解决方案。 运营商三要…...

使用 BERT 进行文本分类 (01/3)
摄影:Max Chen on Unsplash 一、说明 这是使用 BERT 语言模型的一系列文本分类演示的第一部分。以文本的分类作为例,演示它们的调用过程。 二、什么是伯特? BERT 代表 来自变压器的双向编码器表示。 首先,转换器是一种深度学习模…...
layui第三方组件cron的使用
1. 首先上代码 <!DOCTYPE html> <html><head><meta charset"utf-8" /><title>cron表达式生成</title><meta name"renderer" content"webkit" /><meta http-equiv"X-UA-Compatible" con…...
Linux 信号的基本概念
信号的基本概念 1. 信号的概念 信号是Linux系统响应某些条件产生的一些事件。接收到信号的进程会相应地采取一些行动。 2. 信号的生成 信号是由于某些错误条件而生成的,如内存段冲突、浮点处理器错误或非法指令等。信号的生成其实就是一种软件层次的中断&#x…...
神经网络基础-神经网络补充概念-31-参数与超参数
概念 参数(Parameters): 参数是模型内部学习的变量,它们通过训练过程自动调整以最小化损失函数。在神经网络中,参数通常是连接权重(weights)和偏置(biases),…...
C# Linq源码分析之Take (二)
概要 本文主要分析Linq中Take带Range参数的重载方法的源码。对于其中的一些关于Range或序列的新概念,不再赘述,请参看C# Linq源码分析之Take (一) 源码分析 基于Range参数的Take重载方法,主要分成两部分实现&#x…...
解锁数据库简洁之道:FastAPI与SQLModel实战指南
在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...

人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
Python竞赛环境搭建全攻略
Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...
LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》
🧠 LangChain 中 TextSplitter 的使用详解:从基础到进阶(附代码) 一、前言 在处理大规模文本数据时,特别是在构建知识库或进行大模型训练与推理时,文本切分(Text Splitting) 是一个…...