当前位置: 首页 > news >正文

使用opencv4.7.0部署yolov5

yolov5原理和部署原理就不说了,想了解的可以看看这篇部署原理文章

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>//using namespace cv;
//using namespace dnn;
//using namespace std;
int index = 0;struct Net_config
{float confThreshold; // Confidence thresholdfloat nmsThreshold;  // Non-maximum suppression thresholdfloat objThreshold;  //Object Confidence thresholdstd::string modelpath;
};int endsWith(std::string s, std::string sub) {return s.rfind(sub) == (s.length() - sub.length()) ? 1 : 0;
}class YOLO
{
public:YOLO(Net_config config);std::tuple<std::vector<cv::Rect>, std::vector<int>> detect(cv::Mat& frame);
private:float* anchors;int num_stride;int inpWidth;int inpHeight;std::vector<std::string> class_names;int num_class;float confThreshold;float nmsThreshold;float objThreshold;const bool keep_ratio = true;cv::dnn::Net net;void drawPred(float conf, int left, int top, int right, int bottom, cv::Mat& frame, int classid);cv::Mat resize_image(cv::Mat srcimg, int *newh, int *neww, int *top, int *left);};YOLO::YOLO(Net_config config)
{this->confThreshold = config.confThreshold;this->nmsThreshold = config.nmsThreshold;this->objThreshold = config.objThreshold;this->net = cv::dnn::readNet(config.modelpath);std::ifstream ifs("D:\\project_prj\\deeplearn\\yolov5\\class.names");std::string line;while (getline(ifs, line)) this->class_names.push_back(line);this->num_class = class_names.size();this->num_stride = 3;this->inpHeight = 640;this->inpWidth = 640;}cv::Mat YOLO::resize_image(cv::Mat srcimg, int *newh, int *neww, int *top, int *left)
{int srch = srcimg.rows, srcw = srcimg.cols;*newh = this->inpHeight;*neww = this->inpWidth;cv::Mat dstimg;if (this->keep_ratio && srch != srcw) {float hw_scale = (float)srch / srcw;if (hw_scale > 1) {*newh = this->inpHeight;*neww = int(this->inpWidth / hw_scale);resize(srcimg, dstimg, cv::Size(*neww, *newh), cv::INTER_AREA);*left = int((this->inpWidth - *neww) * 0.5);copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, cv::BORDER_CONSTANT, 114);}else {*newh = (int)this->inpHeight * hw_scale;*neww = this->inpWidth;resize(srcimg, dstimg, cv::Size(*neww, *newh), cv::INTER_AREA);*top = (int)(this->inpHeight - *newh) * 0.5;copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, cv::BORDER_CONSTANT, 114);}}else {resize(srcimg, dstimg, cv::Size(*neww, *newh), cv::INTER_AREA);}return dstimg;
}void YOLO::drawPred(float conf, int left, int top, int right, int bottom, cv::Mat& frame, int classid)   // Draw the predicted bounding box
{//Draw a rectangle displaying the bounding boxif(classid==0)cv::rectangle(frame, cv::Point(left, top), cv::Point(right, bottom), cv::Scalar(0, 0, 255), 2);elsecv::rectangle(frame, cv::Point(left, top), cv::Point(right, bottom), cv::Scalar(0, 255, 0), 2);//Get the label for the class name and its confidencestd::string label = cv::format("%.2f", conf);label = this->class_names[classid] + ":" + label;//Display the label at the top of the bounding boxint baseLine;cv::Size labelSize = cv::getTextSize(label, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);top = std::max(top, labelSize.height);if(classid == 0)//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);cv::putText(frame, label, cv::Point(left, top), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 0, 255), 1);elsecv::putText(frame, label, cv::Point(left, top), cv::FONT_HERSHEY_SIMPLEX, 0.75, cv::Scalar(0, 255, 0), 1);
}std::tuple<std::vector<cv::Rect>, std::vector<int>> YOLO::detect(cv::Mat& frame)
{int newh = 0, neww = 0, padh = 0, padw = 0;cv::Mat dstimg = this->resize_image(frame, &newh, &neww, &padh, &padw);cv::Mat blob = cv::dnn::blobFromImage(dstimg, 1 / 255.0, cv::Size(this->inpWidth, this->inpHeight), cv::Scalar(0, 0, 0), true, false);this->net.setInput(blob);std::vector<cv::Mat> outs;this->net.forward(outs, this->net.getUnconnectedOutLayersNames());int num_proposal = outs[0].size[1];int nout = outs[0].size[2];if (outs[0].dims > 2){outs[0] = outs[0].reshape(0, num_proposal);}/generate proposalsstd::vector<float> confidences;std::vector<cv::Rect> boxes;std::vector<int> classIds;float ratioh = (float)frame.rows / newh, ratiow = (float)frame.cols / neww;int n = 0, q = 0, i = 0, j = 0, row_ind = 0; ///xmin,ymin,xamx,ymax,box_score,class_scorefloat* pdata = (float*)outs[0].data;for (int i = 0; i < 25200 / 7; i++){float cx = pdata[i * 7+0];float cy = pdata[i * 7+1];float w = pdata[i * 7 + 2];float h = pdata[i * 7 + 3];float score = pdata[i * 7 + 4];if (score < this->objThreshold)continue;float class_num1 = pdata[i * 7 + 5];float class_num2 = pdata[i * 7 + 6];int left = int((cx - padw - 0.5 * w) * ratiow);int top = int((cy - padh - 0.5 * h) * ratioh);float max_class_socre = class_num1 > class_num2 ? class_num1 : class_num2;if (class_num1 > class_num2){max_class_socre = class_num1;classIds.push_back(0);}else{max_class_socre = class_num2;classIds.push_back(1);}confidences.push_back(max_class_socre);boxes.push_back(cv::Rect(left, top, (int)(w * ratiow), (int)(h * ratioh)));}// Perform non maximum suppression to eliminate redundant overlapping boxes with// lower confidencesstd::vector<cv::Rect> result_;std::vector<int> class_;std::vector<int> indices;cv::dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);for (size_t i = 0; i < indices.size(); ++i){int idx = indices[i];cv::Rect box = boxes[idx];result_.emplace_back(box);class_.emplace_back(classIds[idx]);this->drawPred(confidences[idx], box.x, box.y,box.x + box.width, box.y + box.height, frame, classIds[idx]);}imwrite("D:\\project_prj\\deeplearn\\yolov5\\result\\" + std::to_string(index++) + ".jpg", frame);//std::cout << "done" << std::endl;//delete pdata;return std::make_tuple(result_, class_);
}int main()
{Net_config yolo_nets = { 0.60, 0.5, 0.60, "D:\\project_prj\\run\\best_detectcircle_1.onnx" };YOLO yolo_model(yolo_nets);//string imgpath = "D:\\20230817-144309.jpg";std::string path = "C:\\datas_samll";std::vector<cv::String> result;cv::glob(path, result);for (auto x : result){std::cout << x << std::endl;cv::Mat srcimg = cv::imread(x);auto result = yolo_model.detect(srcimg);}}

相关文章:

使用opencv4.7.0部署yolov5

yolov5原理和部署原理就不说了&#xff0c;想了解的可以看看这篇部署原理文章 #include <fstream> #include <sstream> #include <iostream> #include <opencv2/dnn.hpp> #include <opencv2/imgproc.hpp> #include <opencv2/highgui.hpp>/…...

Python - 协程基本使用详解【demo】

一. 前言 协程&#xff08;Coroutine&#xff09;是一种轻量级的线程&#xff0c;也被称为用户级线程或绿色线程。它是一种用户态的上下文切换方式&#xff0c;比内核态的线程切换更为轻量级&#xff0c;能够高效的支持大量并发操作。 2. 使用协程的好处 Python 中的协程是通…...

Android MVVM架构模式,详详详细学习

MVVM&#xff08;Model-View-ViewModel&#xff09; 是一种基于数据绑定的架构模式&#xff0c;用于设计和组织应用程序的代码结构。它将应用程序分为三个主要部分&#xff1a;Model&#xff08;模型&#xff09;、View&#xff08;视图&#xff09;和ViewModel&#xff08;视…...

亿赛通电子文档安全管理系统 RCE漏洞复现

0x01 产品简介 亿赛通电子文档安全管理系统&#xff08;简称&#xff1a;CDG&#xff09;是一款电子文档安全加密软件&#xff0c;该系统利用驱动层透明加密技术&#xff0c;通过对电子文档的加密保护&#xff0c;防止内部员工泄密和外部人员非法窃取企业核心重要数据资产&…...

星际争霸之小霸王之小蜜蜂(三)--重构模块

目录 前言 一、为什么要重构模块 二、创建game_functions 三、创建update_screen() 四、修改alien_invasion模块 五、课后思考 总结 前言 前两天我们已经成功创建了窗口&#xff0c;并将小蜜蜂放在窗口的最下方中间位置&#xff0c;本来以为今天将学习控制小蜜蜂&#xff0c;结…...

JS的解析与Js2Py使用

JS的解析与Js2Py使用 JS的解析事件监听器搜索关键字请求关联JS文件 Js2PyJs2Py的简单使用安装Js2Py执行JavaScript代码调用JavaScript函数 Js2Py的应用示例创建JavaScript文件使用JavaScript JS的解析 在一个网站中&#xff0c;登录密码通常是会进行加密操作的&#xff0c;那么…...

Spring Bean的生命周期总结(包含面试题)

目录 一、Bean的初始化过程 1. 加载Spring Bean 2. 解析Bean的定义 3. Bean属性定义 4. BeanFactoryPostProcessor 扩展接口 5. 实例化Bean对象 6. Aware感知 7. 初始化方法 8. 后置处理 9. destroy 销毁 二、Bean的单例与多例模式 2.1 单例模式&#xff08;Sin…...

SpringjDBCTemplate_spring25

1、首先导入两个包&#xff0c;里面有模板 2、transtion事务 jDbc操作对象&#xff0c;底层默认的是事务&#xff1a; 3、我们java一般对实体类进行操作。 4、第一步写好坐标。 创建一个Account表 数据修改用update 数据进去了...

设计模式——桥接模式

引用 桥我们大家都熟悉&#xff0c;顾名思义就是用来将河的两岸联系起来的。而此处的桥是用来将两个独立的结构联系起来&#xff0c;而这两个被联系起来的结构可以独立的变化&#xff0c;所有其他的理解只要建立在这个层面上就会比较容易。 基本介绍 桥接模式&#xff08;Br…...

改进YOLO系列:2.添加ShuffleAttention注意力机制

添加ShuffleAttention注意力机制 1. ShuffleAttention注意力机制论文2. ShuffleAttention注意力机制原理3. ShuffleAttention注意力机制的配置3.1common.py配置3.2yolo.py配置3.3yaml文件配置1. ShuffleAttention注意力机制论文 论文题目:SA-NET: SHUFFLE ATTENTION …...

利用Opencv实现人像迁移

前言&#xff1a; Hello大家好&#xff0c;我是Dream。 今天来学习一下如何使用Opencv实现人像迁移&#xff0c;欢迎大家一起参与探讨交流~ 本文目录&#xff1a; 一、实验要求二、实验环境三、实验原理及操作1.照片准备2.图像增强3.实现美颜功能4.背景虚化5.图像二值化处理6.人…...

Lnton羚通算法算力云平台在环境配置时 OpenCV 无法显示图像是什么原因?

问题&#xff1a; cv2.imshow 显示图像时报错&#xff0c;无法显示图像 0%| | 0/1 [00:00<…...

【JavaEE进阶】MyBatis的创建及使用

文章目录 一. MyBatis简介二. MyBatis 使用1. 数据库和数据表的创建2. 创建Mybatis项目2.1 添加MyBatis框架支持2.2 设置MyBatis配置信息 3. MyBatis开发流程4. MyBatis查询数据库测试 三. MyBatis 流程1. MyBatis 查询数据库流程2. MyBatis 框架交互流程图 一. MyBatis简介 M…...

职业学院物联网实训室建设方案

一、概述 1.1专业背景 物联网&#xff08;Internet of Things&#xff09;被称为继计算机、互联网之后世界信息产业第三次浪潮&#xff0c;它并非一个全新的技术领域&#xff0c;而是现代信息技术发展到一定阶段后出现的一种聚合性应用与技术提升&#xff0c;是随着传感网、通…...

3 个 ChatGPT 插件您需要立即下载3 ChatGPT Extensions You need to Download Immediately

在16世纪&#xff0c;西班牙探险家皮萨罗带领约200名西班牙士兵和37匹马进入了印加帝国。尽管印加帝国的军队数量达到了数万&#xff0c;其中包括5,000名精锐步兵和3,000名弓箭手&#xff0c;他们装备有大刀、长矛和弓箭等传统武器。但皮萨罗的军队中有100名火枪手&#xff0c;…...

屏蔽socket 实例化时,握手阶段报错信息WebSocket connection to ‘***‘ failed

事情起因是这样的&#xff1a; 我们网站是需要socket链接实行实时推送服务&#xff0c;有恶意竞争对手通过抓包或者断网&#xff0c;获取到了我们的socket链接地址&#xff0c;那么他就可以通过java写一个脚本无限链接这个socket地址。形成dos攻击。使socket服务器资源耗尽&…...

单发多框检测(SSD)【动手学深度学习】

单发多框检测模型主要由一个基础网络块和若干多尺度特征块串联而成。基本网络用于从输入图像中提取特征,可以使用深度卷积神经网络,原论文中选用了在分类层之前阶段的VGG,现在也常用ResNet替代。 我们可以设计基础网络,使它输出的高和宽较大,这样基于该特征图生成的锚框数…...

“RFID与光伏板的完美融合:探索能源科技的新时代!“

随着科技的不断发展&#xff0c;人类创造出了许多令人惊叹的发明。其中&#xff0c;RFID&#xff08;Radio Frequency Identification&#xff09;技术的应用在各个领域日益广泛。最近的研究表明&#xff0c;将RFID技术应用于光伏板领域&#xff0c;不仅可以提高光伏板的效率&a…...

算法leetcode|71. 简化路径(rust重拳出击)

文章目录 71. 简化路径&#xff1a;样例 1&#xff1a;样例 2&#xff1a;样例 3&#xff1a;样例 4&#xff1a;提示&#xff1a; 分析&#xff1a;题解&#xff1a;rust&#xff1a;go&#xff1a;c&#xff1a;python&#xff1a;java&#xff1a; 71. 简化路径&#xff1a;…...

网络技术Vlan技术STP(第一课)

一 Vlan技术的学习 对命令的增删改查 #### 1&#xff09;创建vlan[SW1]vlan 2 [2-4094] 创建vlan[SW1]vlan batch 10 20 30 创建多个不连续的vlan[SW1]display vlan 查看vlan信息[SW1]vlan batch 50 to 60创建多个连续的vlan[SW1]vlan2[SW1-vlan2]description caiwu添加描述信…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)

UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中&#xff0c;UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化&#xf…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

动态 Web 开发技术入门篇

一、HTTP 协议核心 1.1 HTTP 基础 协议全称 &#xff1a;HyperText Transfer Protocol&#xff08;超文本传输协议&#xff09; 默认端口 &#xff1a;HTTP 使用 80 端口&#xff0c;HTTPS 使用 443 端口。 请求方法 &#xff1a; GET &#xff1a;用于获取资源&#xff0c;…...

MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用

文章目录 一、背景知识&#xff1a;什么是 B-Tree 和 BTree&#xff1f; B-Tree&#xff08;平衡多路查找树&#xff09; BTree&#xff08;B-Tree 的变种&#xff09; 二、结构对比&#xff1a;一张图看懂 三、为什么 MySQL InnoDB 选择 BTree&#xff1f; 1. 范围查询更快 2…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

统计学(第8版)——统计抽样学习笔记(考试用)

一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征&#xff08;均值、比率、总量&#xff09;控制抽样误差与非抽样误差 解决的核心问题 在成本约束下&#xff0c;用少量样本准确推断总体特征量化估计结果的可靠性&#xff08;置…...

CentOS 7.9安装Nginx1.24.0时报 checking for LuaJIT 2.x ... not found

Nginx1.24编译时&#xff0c;报LuaJIT2.x错误&#xff0c; configuring additional modules adding module in /www/server/nginx/src/ngx_devel_kit ngx_devel_kit was configured adding module in /www/server/nginx/src/lua_nginx_module checking for LuaJIT 2.x ... not…...