open cv学习 (五) 图像的阈值处理
图像的阈值处理
demo1
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst", dst)
cv2.waitKey()
cv2.destroyAllWindows()
demo2
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 210, 255, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo3
# 二值化处理黑白渐变图
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 210,150, cv2.THRESH_BINARY)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo4
# 反二值化处理
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
t2, dst2 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imshow("dst2", dst2)
cv2.waitKey()
cv2.destroyAllWindows()
demo5
# 零处理---低于阈值0处理
import cv2
img = cv2.imread("./img.png", 1)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo6
# 零处理---高于阈值0处理
import cv2
img = cv2.imread("./img.png", 0)
# 二值化处理
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_TOZERO_INV)
cv2.imshow("img", img)
cv2.imshow("dst1", dst1)
cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo7
# 截断处理---大于阈值阈值处理
import cv2
img = cv2.imread("./img.png")
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
athdMEAM = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 5, 3)
athdGAUS = cv2.adaptiveThreshold(img_gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 5, 3)
cv2.imshow("athdMEAM", athdMEAM)
cv2.imshow("athdGAUS", athdGAUS)
# cv2.imwrite("./myimg.jpg", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
demo8
# OTsu方法
import cv2
img = cv2.imread("./img.png", 1)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)t1, dst1 = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.putText(dst1, "best threshold" + str(t1), (0, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2)cv2.imshow("dst1", dst1)
cv2.waitKey()
cv2.destroyAllWindows()
相关文章:
open cv学习 (五) 图像的阈值处理
图像的阈值处理 demo1 # 二值化处理黑白渐变图 import cv2 img cv2.imread("./img.png", 0) # 二值化处理 t1, dst cv2.threshold(img, 127, 255, cv2.THRESH_BINARY) cv2.imshow("img", img) cv2.imshow("dst", dst) cv2.waitKey() cv2.des…...
NVIDIA vGPU License许可服务器高可用全套部署秘籍
第1章 前言 近期遇到比较多的场景使用vGPU,比如Citrix 3D场景、Horizon 3D场景,还有AI等,都需要使用显卡设计研发等,此时许可服务器尤为重要,许可断掉会出现掉帧等情况,我们此次教大家部署HA许可服务器。 …...
基于CNN卷积神经网络的口罩检测识别系统matlab仿真
目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ............................................................ % 循环处理每张输入图像 for…...
《HeadFirst设计模式(第二版)》第九章代码——迭代器模式
情景: 一家早餐店和一家午餐点准备合并在一起,两家的点菜的菜单实现方式如下: 首先,他们的菜单选项都基于同一个类: 菜单选项类 package Chapter9_IteratorPattern.Origin;/*** Author 竹心* Date 2023/8/17**/public class Men…...
Electron入门,项目启动。
electron 简单介绍: 实现:HTML/CSS/JS桌面程序,搭建跨平台桌面应用。 electron 官方文档: [https://electronjs.org/docs] 本文是基于以下2篇文章且自行实践过的,可行性真实有效。 文章1: https://www.cnbl…...
深入理解索引B+树的基本原理
目录 1. 引言 2. 为什么要使用索引? 3. 索引的概述 4. 索引的优点是什么? 4.1 降低数据库的IO成本,提高数据查找效率 4.2 保证数据库每一行数据的唯一性 4.3 加速表与表之间的连接 4.4 减少查询中分组与排序的执行时间 5. 索引的缺点…...
vue3 简易用对话框实现点击头像放大查看
设置头像悬停手势 img:hover{cursor: pointer;}效果: 编写对话框 <el-dialog class"bigAvatar"style"border-radius: 4px;"v-model"deleteDialogVisible"title"查看头像"top"5px"><div><img src&…...
opencv 矩阵运算
1.矩阵乘(*) Mat mat1 Mat::ones(2,3,CV_32FC1);Mat mat2 Mat::ones(3,2,CV_32FC1);Mat mat3 mat1 * mat2; //矩阵乘 结果 2.元素乘法或者除法(mul) Mat m Mat::ones(2, 3, CV_32FC1);m.at<float>(0, 1) 3;m.at…...
第四章 字符串part01
344.反转字符串 public void reverseString(char[] s) {int len s.length;int left 0;int right len-1;while (left < right){char tmp s[right];s[right] s[left];s[left] tmp;left;right--;} }反转字符串II 注意String不可变,因此可使用char数组或者St…...
Python3内置函数大全
吐血整理 Python3内置函数大全 1.abs()函数2.all()函数3.any()函数4.ascii()函数5.bin()函数6.bool()函数7.bytes()函数8.challable()函数9.chr()函数10.classmethod()函数11.complex()函数12.complie()函数13.delattr()函数14.dict()函数15.dir()函数16.divmod()函数17.enumer…...
什么是“新型基础设施”?建设重点是什么?
一是信息基础设施。主要是指基于新一代信息技术演化生成的基础设施,比如,以5G、物联网、工业互联网、卫星互联网为代表的通信网络基础设施,以人工智能、云计算、区块链等为代表的新技术基础设施,以数据中心、智能计算中心为代表的…...
混杂接口模式---vlan
策略在两个地方可以用--1、重发布 2、bgp邻居 2、二层可以干的,三层也可以干 3、未知单播:交换机的MAC地址表的记录保留时间是5分钟,电脑的ARP表的记录保留时间是2小时 4、route recursive-lookup tunnel 华为默认对于bgp学习来的路由不开启标…...
Greenplum多级分区表添加分区报错ERROR: no partitions specified at depth 2
一般来说,我们二级分区表都会使用模版,如果没有使用模版特性,那么就会报ERROR: no partitions specified at depth 2类似的错误。因为没有模版,必须要显式指定分区。 当然我们在建表的时候,如果没有指定,那…...
EV PV AC SPI CPI TCPI
SPI EV / PV CPI EV / ACCPI 1.25 SPI 0.8 PV 10 000 BAC 100 000EV PV * SPI 10 000 * 0.8 8000 AC EV / CPI 8000 / 1.25 6400TCPI (BAC - EV) / (BAC -AC) (100 000 - 8 000) / (100 000 - 6 400) 92 000 / 93 600 0.98290598...
【电商领域】Axure在线购物商城小程序原型图,品牌自营垂直电商APP原型
作品概况 页面数量:共 60 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:网上商城、品牌自营商城、商城模块插件 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为品牌自营网上商城…...
Cpp基础Ⅰ之编译、链接
1 C是如何工作的 工具:Visual Studio 1.1 预处理语句 在.cpp源文件中,所有#字符开头的语句为预处理语句 例如在下面的 Hello World 程序中 #include<iostream>int main() {std::cout <"Hello World!"<std::endl;std::cin.get…...
用户新增预测(Datawhale机器学习AI夏令营第三期)
文章目录 简介任务1:跑通Baseline实操并回答下面问题:如果将submit.csv提交到讯飞比赛页面,会有多少的分数?代码中如何对udmp进行了人工的onehot? 任务2.1:数据分析与可视化编写代码回答下面的问题…...
RGOS日常管理操作
RGOS日常管理操作 一、前言二、RGOS平台概述2.1、锐捷设备的常用登陆方式2.2、使用Console登入2.3、Telnet远程管理2.4、SSH远程管理2.5、登陆软件:SecureCRT 三、CLI命令行操作3.1、CLI命令行基础3.2、CLI模式3.3、CLI模式互换3.4、命令行特性3.4.1、分屏显示3.4.2…...
阿里云使用WordPress搭建个人博客
手把手教你使用阿里云服务器搭建个人博客 一、免费创建服务器实例 1.1 点击试用 点击试用会需要你创建服务器实例,直接选择默认的操作系统即可,点击下一步 1.2 修改服务器账号密码 二、创建云数据库实例 2.1 免费获取云数据库使用 2.2 实例列表页 在…...
供应链安全和第三方风险管理:讨论如何应对供应链中的安全风险,以及评估和管理第三方合作伙伴可能带来的威胁
第一章:引言 在当今数字化时代,供应链的安全性越来越受到重视。企业的成功不仅仅依赖于产品和服务的质量,还取决于供应链中的安全性。然而,随着供应链越来越复杂,第三方合作伙伴的参与也带来了一系列安全风险。本文将…...
IDEA运行Tomcat出现乱码问题解决汇总
最近正值期末周,有很多同学在写期末Java web作业时,运行tomcat出现乱码问题,经过多次解决与研究,我做了如下整理: 原因: IDEA本身编码与tomcat的编码与Windows编码不同导致,Windows 系统控制台…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 直接存储器存取 DMA可以提供外设…...
智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?
在大数据处理领域,Hive 作为 Hadoop 生态中重要的数据仓库工具,其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式,很多开发者常常陷入选择困境。本文将从底…...
Java + Spring Boot + Mybatis 实现批量插入
在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法:使用 MyBatis 的 <foreach> 标签和批处理模式(ExecutorType.BATCH)。 方法一:使用 XML 的 <foreach> 标签ÿ…...
