当前位置: 首页 > news >正文

从零实战SLAM-第八课(非特征点的视觉里程计)

 在七月算法报的班,老师讲的蛮好。好记性不如烂笔头,关键内容还是记录一下吧,课程入口,感兴趣的同学可以学习一下。

-------------------------------------------------------------------------------------------------------------------------------

特征点法流程:

1.在图像中提取特征点并计算特征描述    非常耗时约10ms ORB

2.在不同图像中寻找特征匹配                  非常耗时𝑂(𝑛∧2) 暴力匹配

3.利用匹配点信息计算相机位姿               比较快速<1ms

是否可以不使用特征匹配计算VO?

光流法:最小化重投影误差 Reprojection error

直接法:最小化光度误差 Photometric error

光流: 追踪源图像某个点在其他图像中的运动。本质→估计像素在不同时刻图像中的运动。

光流法又分为两大类,每一类的计算方法也不同。

❑ 稀疏光流:计算部分像素运动 ---- Lucas Kanade

❑ 稠密光流:计算全部像素运动 ---- Horn Schunck

光流法的前提假说:灰度不变。

光流法的数学基础

光流法中的L-K方法

LK光流的结果依赖于图像梯度

❑ 但梯度不够平滑,可能剧烈变化

❑ 局部的梯度不能用于预测长期图像走向

解决方式:多层光流

光流法的总结:

➢ 可以看成最小化像素误差的非线性优化

➢ 每次使用了 Taylor 一阶近似,在离优化点较远时效果不佳,往往需要迭代多次

➢ 运动较大时要使用金字塔

➢ 可以用于跟踪图像中的稀疏关键点的运动轨迹

➢ 得到配对点后,后续计算与特征法VO中相同

光流法的缺点:

➢ 没有用到相机本身的几何结构

➢ 没有考虑到相机的旋转和图像的缩放

➢ 对于边界上的点,光流不好追踪

直接法:

通过相机模型对相机位姿变化进行估计

建立目标函数

计算过程

左扰动分解中三项的物理意义

根据使用的图像信息不同,可分为:

➢ 稀疏直接法:只处理稀疏角点或关键点

➢ 稠密直接法:使用所有像素

➢ 半稠密直接法:使用部分梯度明显的像素

直接法的直观解释:

➢ 像素灰度引导着优化的方向

➢ 要使优化成立,必须保证从初始估计到最优估计中间的梯度一直下降

➢ 这很容易受到图像非凸性的影响

直接法的优势与劣势

优势:

❑ 省略特征提取的时间

❑ 只需有像素梯度而不必是角点(对白墙等地方有较好效果)

❑ 可稠密或半稠密

劣势:

❑ 灰度不变难以满足(易受曝光和模糊影响)

❑ 单像素区分性差

❑ 图像非凸性

相关文章:

从零实战SLAM-第八课(非特征点的视觉里程计)

在七月算法报的班&#xff0c;老师讲的蛮好。好记性不如烂笔头&#xff0c;关键内容还是记录一下吧&#xff0c;课程入口&#xff0c;感兴趣的同学可以学习一下。 --------------------------------------------------------------------------------------------------------…...

Azure使用CLI创建VM

使用CLI创建VM之前&#xff0c;确保资源中的IP资源已经释放掉了&#xff0c;避免创建的过程中没有可以利用的公共IP地址打开 cloudshell ,并输入创建CLI的命令如下&#xff0c;-n指定名称&#xff0c;-g指定资源组&#xff0c;image指定镜像&#xff0c;admin-usernam指定用户名…...

Rust: 聊聊AtomicPtr<()>和 *const ()

在Bytes库在github源码&#xff08;https://docs.rs/bytes/1.1.0/src/bytes/bytes.rs.html#94-100&#xff09;有关Bytes的定义中&#xff0c; pub struct Bytes {ptr: *const u8,len: usize, // inlined "trait object"data: AtomicPtr<()>, vtable: &st…...

公网远程连接Redis数据库详解

文章目录 1. Linux(centos8)安装redis数据库2. 配置redis数据库3. 内网穿透3.1 安装cpolar内网穿透3.2 创建隧道映射本地端口 4. 配置固定TCP端口地址4.1 保留一个固定tcp地址4.2 配置固定TCP地址4.3 使用固定的tcp地址连接 前言 洁洁的个人主页 我就问你有没有发挥&#xff0…...

天津报web前端培训班一定要选贵的吗?

根据这几年数据显示&#xff0c;IT行业飞速发展&#xff0c;岗位需求增多&#xff0c;Web前端是个很新的职业&#xff0c;在国内乃至国际上真正开始受到重视的时间不超过五年&#xff0c;Web前端开发是从网页制作演变而来&#xff0c;名称是有很明显的时代特性。 Web前端就业形…...

iptables学习笔记

iptables的结构&#xff1a; iptables由上而下&#xff0c;由Tables&#xff0c;Chains&#xff0c;Rules组成。 一、iptables的表tables与链chains iptables有Filter, NAT, Mangle, Raw四种内建表&#xff1a; 1. Filter表 Filter是iptables的默认表&#xff0c;它有以下…...

Express 实战(一):概览

在正式学习 Express 内容之前&#xff0c;我们有必要从大的方面了解一下 Node.js 。 在很长的一段时间里&#xff0c;JavaScript 一门编写浏览器中运行脚本的语言。不过近些年&#xff0c;随着互联网的发展以及技术进步&#xff0c;JavaScript 迎来了一个集中爆发的时代。一个…...

SpringBoot中的可扩展接口

目录 # 背景 # 可扩展的接口启动调用顺序图 # ApplicationContextInitializer # BeanDefinitionRegistryPostProcessor # BeanFactoryPostProcessor # InstantiationAwareBeanPostProcessor # SmartInstantiationAwareBeanPostProcessor # BeanFactoryAware # Applicati…...

中大型无人机远程VHF语音电台系统方案

方案背景 中大型无人机在执行飞行任务时&#xff0c;特别是在管制空域飞行时地面航管人员需要通过语音与无人机通信。按《无人驾驶航空器飞行管理暂行条例》规定&#xff0c;中大型无人机应当进行适航管理。物流无人机和载人eVTOL都将进行适航管理&#xff0c;所以无人机也要有…...

数字孪生和SCADA有哪些区别?

虽然SCADA和数字孪生用于工业领域&#xff0c;但它们有不同的用途。SCADA专注于工业过程的实时监测和控制&#xff0c;而数字孪生用于模拟和分析系统的性能。接下来&#xff0c;让我们详细讨论SCADA和数字孪生&#xff08;SCADA与数字孪生&#xff09;之间的区别。 SCADA与数字…...

[bug] 记录version `GLIBCXX_3.4.29‘ not found 解决方法

在使用mediapipe 这个库的时候&#xff0c;首次使用出现 GLIBCXX_3.4.29’ not found 错误&#xff0c; 看起来是安装mediapipe 的时候自动升级了 matplotlib 这个库&#xff0c;导致依赖的 libstd.so 版本不满足了&#xff0c;GLIBCXX_3.4.29 is an object from libstdc.so.…...

git 回滚相关问题

原本用as自带的git执行回滚任务&#xff0c; 但是提交之后发现并没有成功&#xff0c; 后面通过命令行的方式重新回滚并且提交上去&#xff0c;就可以了 说明as的git还是有点小瑕疵&#xff0c;还是命令行最稳妥 相关博文&#xff1a; git代码回滚操作_imkaifan的博客-CSDN博…...

SQL力扣练习(十一)

目录 1.树节点(608) 示例 1 解法一(case when) 解法二(not in) 2.判断三角形(610) 示例 1 解法一(case when) 解法二(if) 解法三(嵌套if) 3.只出现一次的最大数字(619) 示例 1 解法一(count limit) 解法二(max) 4.有趣的电影(620) 解法一 5.换座位(626) 示例 …...

如何将常用的jdbc方法封装起来???

你是否还在为每次新建项目连接数据库而烦恼&#xff1f;&#xff1f;&#xff1f;&#xff08;教你一次代码&#xff0c;简单完成每次连接&#xff09; 1.建立maven项目 还没下载安装或者不会建立maven项目的可以看这里哦&#xff1a;maven的下载安装与配置环境变量&#xff0…...

【1day】复现任我行协同CRM存在SQL注入漏洞

目录 一、漏洞描述 二、影响版本 三、资产测绘 四、漏洞复现 一、漏洞描述 任我行CRM是CRM(客户关系管理)、OA(自动化办公)、OM(目标管理)、KM(知识管理)、HR(人力资源)一体化的企业管理软件。通过建立组织运营管理铁三角(目标行动-企业文化-知识复制),一...

3D虚拟形象数字替身的制作及应用介绍

“虚拟数字人”这一词汇已经深入人心。从虚拟偶像、虚拟代言人到虚拟主播、虚拟员工各种类型虚拟数字形象不断进入公众视野&#xff0c;由于其与Z世代的独特亲和力以及与新媒体平台的高度适配性&#xff0c;虚拟数字人在各个领域都在呈崛起之势&#xff0c;并且有着深度的融合&…...

Spring中JavaBean的生命周期及模式

( 本篇文章大部分讲述了是底层知识&#xff0c;理念及原理 ) ( 如果只想了解&#xff0c;看我标记的重点即可&#xff0c;如果想明白其中原理&#xff0c;请耐心看完&#xff0c;对你大有受益 ) 目录 一、简介 ( 1 ) 是什么 ( 2 ) 背景概述 ( 3 ) 作用 二、生命周期 2.1 …...

Qt5开发环境-银河麒麟V10ARM平台

目录 前言1.源码下载2.编译安装2.1 安装依赖2.2 编译2.3 遇到的问题2.4 安装 3.编译qtwebengine3.1 安装依赖库3.2 编译3.3 遇到的问题3.4 安装 4.配置开发环境5.测试6.程序无法输入中文的问题总结 前言 近期因参与开发的某个软件需要适配银河麒麟v10arm 平台&#xff0c;于是…...

「Qt」文件读写操作

0、引言 我们知道 C 和 C 都提供了文件读写的类库&#xff0c;不过 Qt 也有一套自己的文件读写操作&#xff1b;本文主要介绍 Qt 中进行文件读写操作的类 —— QFile。 1、QFileDialog 文件对话框 一般的桌面应用程序&#xff0c;当我们想要打开一个文件时&#xff0c;通常会弹…...

0101前期准备-大数据学习

文章目录 1 前言2 配置VMware虚拟机2.1 设置主机名和固定IP2.2 本地系统与Linux系统配置主机名映射2.3 配置虚拟机之间用户的SSH免密互通2.4 安装JDK环境2.5 关闭防火墙和SELinux2.6 更新时区和同步时间2.7 保存虚拟机快照 结语 1 前言 我们从基础的hadoop开始学起&#xff0c;…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

YSYX学习记录(八)

C语言&#xff0c;练习0&#xff1a; 先创建一个文件夹&#xff0c;我用的是物理机&#xff1a; 安装build-essential 练习1&#xff1a; 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件&#xff0c;随机修改或删除一部分&#xff0c;之后…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

上位机开发过程中的设计模式体会(1):工厂方法模式、单例模式和生成器模式

简介 在我的 QT/C 开发工作中&#xff0c;合理运用设计模式极大地提高了代码的可维护性和可扩展性。本文将分享我在实际项目中应用的三种创造型模式&#xff1a;工厂方法模式、单例模式和生成器模式。 1. 工厂模式 (Factory Pattern) 应用场景 在我的 QT 项目中曾经有一个需…...

sshd代码修改banner

sshd服务连接之后会收到字符串&#xff1a; SSH-2.0-OpenSSH_9.5 容易被hacker识别此服务为sshd服务。 是否可以通过修改此banner达到让人无法识别此服务的目的呢&#xff1f; 不能。因为这是写的SSH的协议中的。 也就是协议规定了banner必须这么写。 SSH- 开头&#xff0c…...

加密通信 + 行为分析:运营商行业安全防御体系重构

在数字经济蓬勃发展的时代&#xff0c;运营商作为信息通信网络的核心枢纽&#xff0c;承载着海量用户数据与关键业务传输&#xff0c;其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级&#xff0c;传统安全防护体系逐渐暴露出局限性&a…...