PyTorch Lightning:通过分布式训练扩展深度学习工作流

一、介绍
欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提供高级抽象,使研究人员和从业者能够更多地关注模型设计和实验,而不是样板代码。
在本文中,我们将深入研究 PyTorch Lightning,并探索它如何通过分布式训练实现深度学习工作流的扩展。分布式训练对于在海量数据集上训练大型模型至关重要,因为它允许我们利用多个 GPU 或机器的强大功能来加速训练过程。然而,分布式训练往往伴随着一系列挑战和复杂性。
二、安装 Pytorch Lightning & Torchvision
pip install torch torchvision pytorch-lightning 三、实现
首先,我们需要从 PyTorch 和 PyTorch Lightning 导入必要的模块:
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision import transformsimport pytorch_lightning as pl 接下来,我们使用 PyTorch 的类定义我们的神经网络架构。在这个例子中,我们使用一个简单的卷积神经网络,其中包含两个卷积层和三个全连接层:nn.Module
class Net(pl.LightningModule):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(nn.functional.relu(self.conv1(x)))x = self.pool(nn.functional.relu(self.conv2(x)))x = torch.flatten(x, 1)x = nn.functional.relu(self.fc1(x))x = nn.functional.relu(self.fc2(x))x = self.fc3(x)return x 然后,我们为 .在该方法中,我们接收一批输入和标签,将它们通过我们的神经网络来获取 logits,计算交叉熵损失,并使用该方法记录训练损失。在该方法中,我们执行与 相同的操作,但不记录损失:LightningModuletraining_stepxyself.logvalidation_steptraining_step
def training_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = nn.functional.cross_entropy(logits, y)self.log("train_loss", loss)return lossdef validation_step(self, batch, batch_idx):x, y = batchlogits = self(x)loss = nn.functional.cross_entropy(logits, y)self.log("val_loss", loss)return loss 我们还在方法中定义了优化器和学习率调度器:configure_optimizers
def configure_optimizers(self):optimizer = torch.optim.Adam(self.parameters(), lr=0.001)scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1)return [optimizer], [scheduler] 接下来,我们使用 PyTorch 和 定义数据加载和预处理步骤:DataLoadertransforms
def prepare_data(self):transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])CIFAR10(root='./data', train=True, download=True, transform=transform)CIFAR10(root='./data', train=False, download=True, transform=transform)def train_dataloader(self):transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])train_dataset = CIFAR10(root='./data', train=True, download=False, transform=transform)return DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=8)def val_dataloader(self):transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])val_dataset = CIFAR10(root='./data', train=False, download=False, transform=transform)return DataLoader(val_dataset, batch_size=64, shuffle=False, num_workers=8) prepare_data(self):此函数负责在训练模型之前准备数据。它首先使用该类定义一系列转换。转换包括将数据转换为张量并对其进行规范化。定义转换后,该函数将下载用于训练和测试拆分的 CIFAR10 数据集。数据集将下载到目录,并将指定的转换应用于数据。transforms.Compose'./data'train_dataloader(self):此函数为训练数据集创建数据加载器。它首先定义与函数中相同的转换。接下来,它为训练拆分创建 CIFAR10 数据集的实例。从目录中加载数据集,并应用指定的转换。最后,使用训练数据集创建一个对象。数据加载程序配置为 64 的批大小,对数据进行随机排序,并使用 8 个工作线程进行数据加载。它返回数据加载器。prepare_data'./data'DataLoaderval_dataloader(self):此函数为验证数据集创建数据加载器。它遵循与函数类似的结构。它首先使用 定义转换,这些转换与前面的函数相同。然后,为验证拆分创建 CIFAR10 数据集的实例。从目录中加载数据集,并应用指定的转换。最后,使用验证数据集创建一个对象。数据加载器配置为 64 的批大小,无需随机处理数据,并使用 8 个工作线程进行数据加载。它返回数据加载器。train_dataloadertransforms.Compose'./data'DataLoader
该函数将模型作为输入,并对测试数据集执行评估。它首先对测试数据应用转换,将其转换为张量并规范化。然后,它为测试数据集创建数据加载程序。模型将移动到相应的设备(GPU,如果可用)。评估标准设置为交叉熵损失。evaluate_model
def evaluate_model(model):transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])test_dataset = CIFAR10(root='./data', train=False, download=True, transform=transform)test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False, num_workers=8)device = torch.device("cuda" if torch.cuda.is_available() else "cpu")model = model.to(device)criterion = nn.CrossEntropyLoss()model.eval()test_loss = 0.0correct = 0total = 0with torch.no_grad():for data in test_loader:inputs, labels = datainputs = inputs.to(device)labels = labels.to(device)outputs = model(inputs)loss = criterion(outputs, labels)test_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = 100.0 * correct / totalaverage_loss = test_loss / len(test_loader)print(f"Test Loss: {average_loss:.4f}")print(f"Test Accuracy: {accuracy:.2f}%") 将模型置于评估模式,并初始化测试损失、正确预测和总数据点的变量。在无梯度上下文中,该函数遍历测试数据加载器,通过模型转发成批的输入,计算损失并累积测试损失。它还计算正确预测的数量和数据点的总数。最后,它计算并打印平均测试损失和测试精度。
最后,我们实例化我们的模型和来自 PyTorch Lightning,指定用于分布式训练的所需数量的 GPU 或机器:NetTrainer
net = Net()trainer = pl.Trainer(num_nodes=1, # Change to the number of machines in your distributed setupaccelerator="auto", # Distributed Data Parallel, Available names are: auto, cpu, cuda, hpu, ipu, mps, tpu.max_epochs=5, devices=1 # Change to the desired number of GPUs or use `None` for CPU training
)trainer.fit(net)evaluate_model(net) num_nodes:它指定分布式设置中的计算机数量。在这种情况下,它设置为 ,表示单台计算机设置。1accelerator:它确定训练的加速器类型。该值允许 PyTorch Lightning 根据硬件和软件环境自动选择适当的加速器。其他可能的值包括 、 和 ,它们对应于特定的硬件加速器。"auto""cpu""cuda""hpu""ipu""mps""tpu"max_epochs:它设置用于训练模型的最大周期数(通过训练数据集的完整遍历)。在本例中,它设置为 。5devices:它指定用于训练的 GPU 数量。将其设置为 表示使用单个 GPU 进行训练。如果要在 CPU 上进行训练,可以将其设置为 。1None
这些选项允许您控制训练过程的各个方面,例如分布式训练、加速器选择以及用于训练的周期数和设备数。
设置好所有内容后,我们只需调用对象的方法,传入我们的模型、训练数据加载器和验证数据加载器。fitTrainerNet
四、输出

五、结论
PyTorch Lightning 通过分布式训练简化了扩展深度学习工作流的过程。通过抽象化分布式训练的复杂性,PyTorch Lightning 使我们能够专注于设计和实现我们的深度学习模型,而不必担心低级细节。在本文中,我们演练了一个使用 PyTorch Lightning 进行分布式训练的示例代码实现。通过利用多个GPU或机器的强大功能,我们可以显著减少大型深度学习模型的训练时间。
六、引用
- PyTorch Lightning: Welcome to ⚡ PyTorch Lightning — PyTorch Lightning 2.1.0.rc0 documentation
- PyTorch: PyTorch
- torchvision.datasets.CIFAR10: Datasets — Torchvision 0.15 documentation
- torch.utils.data.DataLoader: torch.utils.data — PyTorch 2.0 documentation
- 火炬亚当:Adam — PyTorch 2.0 documentation
- torch.optim.lr_scheduler。步长:StepLR — PyTorch 2.0 documentation
- Torch.nn.CrossEntropyLoss: CrossEntropyLoss — PyTorch 2.0 documentation
- torch.cuda.is_available:torch.cuda — PyTorch 2.0 documentation
阿奈·东格雷
皮托奇
分布式系统
相关文章:
PyTorch Lightning:通过分布式训练扩展深度学习工作流
一、介绍 欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提…...
无涯教程-Perl - splice函数
描述 此函数从LENGTH元素的OFFSET元素中删除ARRAY元素,如果指定,则用LIST替换删除的元素。如果省略LENGTH,则从OFFSET开始删除所有内容。 语法 以下是此函数的简单语法- splice ARRAY, OFFSET, LENGTH, LISTsplice ARRAY, OFFSET, LENGTHsplice ARRAY, OFFSET返回值 该函数…...
归并排序:从二路到多路
前言 我们所熟知的快速排序和归并排序都是非常优秀的排序算法。 但是快速排序和归并排序的一个区别就是:快速排序是一种内部排序,而归并排序是一种外部排序。 简单理解归并排序:递归地拆分,回溯过程中,将排序结果进…...
【Vue】运行项目报错 This dependency was not found
背景 运行Vue 项目报错,提示This dependency was not found;然后我根据提示 执行 npm install --save vue/types/umd ,执行后发现错误,我一开始一直以为是我本地装不上这个依赖。后来找了资料后,看到应该是自己的代码里面随意的i…...
Shell编程之正则表达式
文本处理器:三剑客:grep查找sed awk shell正则表达式由一类特殊字符以及文本字符所编写的一种模式,处理文本当中的内容,其中的一些字符不表示字符的字面含义表示一种控制或者通配的功能 通配符:匹配文件名和目录名&a…...
QGraphicsView 实例3地图浏览器
主要介绍Graphics View框架,实现地图的浏览、放大、缩小,以及显示各个位置的视图、场景和地图坐标 效果图: mapwidget.h #ifndef MAPWIDGET_H #define MAPWIDGET_H #include <QLabel> #include <QMouseEvent> #include <QGraphicsView&…...
Windows基础安全知识
目录 常用DOS命令 ipconfig ping dir cd net user 常用DOS命令 内置账户访问控制 Windows访问控制 安全标识符 访问控制项 用户账户控制 UAC令牌 其他安全配置 本地安全策略 用户密码策略复杂性要求 强制密码历史: 禁止密码重复使用 密码最短使用期限…...
自定义注解和自定义注解处理器来扫描所有带有某个特定注解的Controller层
在Spring Boot中,您可以使用自定义注解和自定义注解处理器来扫描所有带有某个特定注解的Controller层。 以下是一个简单的示例,演示如何实现这个功能: 首先,创建自定义注解 CustomAnnotation ,用于标记需要被扫描的C…...
浏览器渲染原理 - 输入url 回车后发生了什么
目录 渲染时间点渲染流水线1,解析(parse)HTML1.1,DOM树1.2,CSSOM树1.3,解析时遇到 css 是怎么做的1.4,解析时遇到 js 是怎么做的 2,样式计算 Recalculate style3,布局 la…...
大文本的全文检索方案附件索引
一、简介 Elasticsearch附件索引是需要插件支持的功能,它允许将文件内容附加到Elasticsearch文档中,并对这些附件内容进行全文检索。本文将带你了解索引附件的原理和使用方法,并通过一个实际示例来说明如何在Elasticsearch中索引和检索文件附…...
35_windows环境debug Nginx 源码-CLion配置CMake和启动
文章目录 生成 CMakeLists.txt 组态档35_windows环境debug Nginx 源码-CLion配置CMake和启动生成 CMakeLists.txt 组态档 修改auto目录configure文件,在 . auto/make 上边增加 . auto/cmake, 大概在 106 行。在 auto 目录下创建cmake 文件其内容如下: #!/usr/bin/env bash NG…...
收集的一些比较好的git网址
1、民间故事 https://github.com/folkstory/lingqiu/blob/master/%E4%BC%A0%E8%AF%B4%E9%83%A8%E5%88%86/%E4%BA%BA%E7%89%A9%E4%BC%A0%E8%AF%B4/%E2%80%9C%E6%B5%B7%E5%BA%95%E6%8D%9E%E6%9C%88%E2%80%9D%E7%9A%84%E6%AD%A6%E4%B8%BE.md 2、童话故事 https://gutenberg.org/c…...
容斥原理 博弈论(多种Nim游戏解法)
目录 容斥原理容斥原理的简介能被整除的数(典型例题)实现思路代码实现扩展:用DPS实现 博弈论博弈论中的相关性质博弈论的相关结论先手必败必胜的证明Nim游戏(典型例题)代码实现 台阶-Nim游戏(典型例题&…...
【C++】函数指针
2023年8月18日,周五上午 今天在B站看Qt教学视频的时候遇到了 目录 语法和typedef或using结合我的总结 语法 返回类型 (*指针变量名)(参数列表)以下是一些示例来说明如何声明不同类型的函数指针: 声明一个不接受任何参数且返回void的函数指针…...
VBA技术资料MF45:VBA_在Excel中自定义行高
【分享成果,随喜正能量】可以不光芒万丈,但不要停止发光。有的人陷入困境,不是被人所困,而是自己束缚自己,这时"解铃还须系铃人",如果自己无法放下,如何能脱困? 。 我给V…...
【Git】Git中的钩子
Git Book——Git的自定义钩子 Git中的钩子分为两大类: 1、客户端钩子:由诸如提交和合并这样的操作所调用 2、服务端钩子:由诸如接收被推送的提交这样的联网操作 客户端钩子: 提交工作流钩子 pre-commit:在提交信息前…...
java 工程管理系统源码+项目说明+功能描述+前后端分离 + 二次开发 em
Java版工程项目管理系统 Spring CloudSpring BootMybatisVueElementUI前后端分离 功能清单如下: 首页 工作台:待办工作、消息通知、预警信息,点击可进入相应的列表 项目进度图表:选择(总体或单个)项目显…...
Java # JVM
一、1.8之前 运行时数据区(进程共享) 运行时常量池为什么要有方法区: jvm完成类装载后,需要将class文件中的常量池转入内存,保存在方法区中为什么是常量: 常量对象操作较多,为了避免频繁创建和…...
vscode远程连接Linux失败,提示过程试图写入的管道不存在(三种解决办法)
vscode报错如下: 一、第一种情况 原因是本地的known_hosts文件记录服务器信息与现服务器的信息冲突了,导致连接失败。 解决方案就是把本地的known_hosts的原服务器信息全部删掉,然后重新连接。 二、第二种情况 在编写配置文件config时&…...
elaticsearch(1)
1.简介 Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理PB级别的数据。 Elasticsearch也使用Java开发并使用Lucene作为其核心来实现所有索引…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
嵌入式常见 CPU 架构
架构类型架构厂商芯片厂商典型芯片特点与应用场景PICRISC (8/16 位)MicrochipMicrochipPIC16F877A、PIC18F4550简化指令集,单周期执行;低功耗、CIP 独立外设;用于家电、小电机控制、安防面板等嵌入式场景8051CISC (8 位)Intel(原始…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
客户案例 | 短视频点播企业海外视频加速与成本优化:MediaPackage+Cloudfront 技术重构实践
01技术背景与业务挑战 某短视频点播企业深耕国内用户市场,但其后台应用系统部署于东南亚印尼 IDC 机房。 随着业务规模扩大,传统架构已较难满足当前企业发展的需求,企业面临着三重挑战: ① 业务:国内用户访问海外服…...
归并排序:分治思想的高效排序
目录 基本原理 流程图解 实现方法 递归实现 非递归实现 演示过程 时间复杂度 基本原理 归并排序(Merge Sort)是一种基于分治思想的排序算法,由约翰冯诺伊曼在1945年提出。其核心思想包括: 分割(Divide):将待排序数组递归地分成两个子…...
