算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数
算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数
爬楼梯 (进阶)
70. 爬楼梯 - 力扣(LeetCode)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
改为:一步一个台阶,两个台阶,三个台阶,…,直到 m个台阶。问有多少种不同的方法可以爬到楼顶呢?
1阶,2阶,… m阶就是物品,楼顶就是背包。
每一阶可以重复使用,例如跳了1阶,还可以继续跳1阶。
问跳到楼顶有几种方法其实就是问装满背包有几种方法。
此时大家应该发现这就是一个完全背包问题了!
-
确定dp数组以及下标的含义
dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
-
确定递推公式
本题呢,dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]
那么递推公式为:dp[i] += dp[i - j]
-
dp数组如何初始化
既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。
-
确定遍历顺序
这是背包里求排列问题,即:1、2 步 和 2、1 步都是上三个台阶,但是这两种方法不一样!
所以需将target放在外循环,将nums放在内循环。
每一步可以走多次,这是完全背包,内循环需要从前向后遍历。
-
举例来推导dp数组
class Solution {public int climbStairs(int n) {int[] dp = new int[n+1];dp[0] = 1;for (int i = 0; i <=n; i++) {for (int j = 1; j <=2; j++) {if(i>=j) dp[i]+=dp[i-j];}}return dp[n];}
}
零钱兑换
322. 零钱兑换 - 力扣(LeetCode)
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
-
确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
-
确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
-
dp数组初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
其他下标对应的数值呢?
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。所以下标非0的元素都是应该是最大值。
-
确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
-
举例推导dp数组
以输入:coins = [1, 2, 5], amount = 5为例

dp[amount]为最终结果。
class Solution {public int coinChange(int[] coins, int amount) {int max = amount + 1;int[] dp = new int[amount + 1];Arrays.fill(dp, max);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != max) {dp[j] = Math.min(dp[j - coins[i]] + 1, dp[j]);}}}return dp[amount] == max ? -1 : dp[amount];}
}
完全平方数
279. 完全平方数 - 力扣(LeetCode)
给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1、4、9 和 16 都是完全平方数,而 3 和 11 不是。
-
确定dp数组(dp table)以及下标的含义
dp[j]:和为j的完全平方数的最少数量为dp[j]
-
定递推公式
dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j]。
此时我们要选择最小的dp[j],所以递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j]);
-
dp数组如何初始化
dp[0]表示 和为0的完全平方数的最小数量,那么dp[0]一定是0。
非0下标的dp[j]应该是多少呢?
从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]);中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖。
-
确定遍历顺序
本题外层for遍历背包,内层for遍历物品,还是外层for遍历物品,内层for遍历背包,都是可以的!
-
举例推导dp数组
已输入n为5例,dp状态图如下:

class Solution {public int numSquares(int n) {int max = n+1;int[] dp = new int[n+1];Arrays.fill(dp,max);dp[0]= 0 ;for (int i=0;i*i<=n;i++){for (int j = i*i; j <=n; j++) {if (dp[j-i*i]!=max)dp[j] = Math.min(dp[j-i*i]+1,dp[j]);}}return dp[n];}
}
相关文章:
算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数
算法训练营 day49 动态规划 爬楼梯 (进阶)零钱兑换 完全平方数 爬楼梯 (进阶) 70. 爬楼梯 - 力扣(LeetCode) 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同…...
Vue:extends继承组件复用性
提到extends继承,最先想到的可能是ES6中的class、TS中的interface、面向对象编程语言中中的类和接口概念等等,但是我们今天的关注点在于:如何在Vue中使用extends继承特性。 目录 Vue:创建Vue实例的方式 构造函数方式࿱…...
ChatGPT 的一些思考
最近 ChatGPT3.5 在全世界范围内掀起了一次 AI 的潮流,ChatGPT1.0/ChatGPT2.0 当时也是比较火爆,但是那个当时感觉还是比较初级的应用,相当于是一个进阶版的微软小冰,给人的感觉是有一点智能,但不多。其实从早期版本开…...
GEE学习笔记 六十九:【GEE之Python版教程三】Python基础编程一
环境配置完成后,那么可以开始正式讲解编程知识。之前我在文章中也讲过,GEE的python版接口它是依赖python语言的。目前很多小伙伴是刚开始学习GEE编程,之前或者没有编程基础,或者是没有学习过python。为了照顾这批小伙伴࿰…...
大数据全系安装
内容版本号CentOS7.6.1810ZooKeeper3.4.6Hadoop2.9.1HBase1.2.0MySQL5.6.51HIVE2.3.7Sqoop1.4.6flume1.9.0kafka2.8.1scala2.12davinci3.0.1spark2.4.8flink1.13.5 1. 下载CentOS 7镜像 CentOS官网 2. 安装CentOS 7系统——采用虚拟机方式 2.1 新建虚拟机 2.2.1 [依次选择]-&…...
stable-diffusion-webui 安装使用
文章目录1.github 下载,按教程运行2.安装python 忘记勾选加入环境变量,自行加入(重启生效)3.环境变量添加后,清理tmp ,venv重新运行4.运行报错,无法升级pip,无法下载包,5…...
3D点云处理:点云聚类--FEC: Fast Euclidean Clustering for Point Cloud Segmentation
文章目录 聚类结果一、论文内容1.1 Ground Surface Removal1.2 Fast Euclidean Clustering题外:欧几里得聚类Fast Euclidean Clustering二、参考聚类结果 原始代码中采用的是pcl中的搜索方式,替换为另外第三方库,速度得到进一步提升。 一、论文内容 论文中给出的结论:该…...
华为OD机试题 - 射击比赛(JavaScript)| 代码+思路+重要知识点
最近更新的博客 华为OD机试题 - 括号检查(JavaScript) 华为OD机试题 - 最小施肥机能效(JavaScript) 华为OD机试题 - 子序列长度(JavaScript) 华为OD机试题 - 众数和中位数(JavaScript) 华为OD机试题 - 服务依赖(JavaScript) 华为OD机试题 - 字符串加密(JavaScript)…...
流程引擎之Flowable简介
背景Flowable 是一个流行的轻量级的采用 Java 开发的业务流程引擎,通过 Flowable 流程引擎,我们可以部署遵循 BPMN2.0 协议的流程定义(一般为XML文件)文件,并能创建流程实例,查询和访问流程相关的实例与数据…...
AcWing:4861. 构造数列、4862. 浇花(C++)
目录 4861. 构造数列 问题描述: 实现代码: 4862. 浇花 问题描述: 实现代码: 4861. 构造数列 问题描述: 我们规定如果一个正整数满足除最高位外其它所有数位均为 00,则称该正整数为圆数。 例如&…...
进程的概念
进程的概念 程序的概念 这里说的是一个可执行文件,passive的意思可以理解为我们这个执行文件需要我们进行双击才会被被执行。 双击后,程序入口地址读入寄存器,程序加载入主存,成为一个进程 进程是主动去获取想要的资源࿰…...
自动化测试5年经验,分享一些心得
自动化测试介绍 自动化测试(Automated Testing),是指把以人为驱动的测试行为转化为机器执行的过程。实际上自动化测试往往通过一些测试工具或框架,编写自动化测试用例,来模拟手工测试过程。比如说,在项目迭代过程中,持…...
independentsoft.de/MSG .NET Framework Crack
MSG .NET 是用于 .NET Framework / .NET Core 的 Microsoft Outlook .msg 文件 API。API 允许您轻松创建/读取/解析/转换 .msg 文件等。API 不需要在机器上安装 Microsoft Outlook 或任何其他第三方应用程序或库即可工作。 以下示例向您展示了如何打开现有文件并显示消息的某些…...
基于Transformer的NLP处理管线
HuggingFace transformers 是一个整合了跨语言、视觉、音频和多模式模态与最先进的预训练模型并且提供用户友好的 API 的AI开发库。 它由 170 多个预训练模型组成,支持 PyTorch、TensorFlow 和 JAX 等框架,能够在代码之间进行互操作。 这个库还易于部署&…...
二叉树OJ(一)二叉树的最大深度 二叉搜索树与双向链表 对称的二叉树
二叉树的最大深度 二叉树中和为某一值的路径(一) 二叉搜索树与双向链表 对称的二叉树 二叉树的最大深度 描述 求给定二叉树的最大深度, 深度是指树的根节点到任一叶子节点路径上节点的数量。 最大深度是所有叶子节点的深度的最大值。 (注:…...
使用Fairseq进行Bart预训练
文章目录前言环境流程介绍数据部分分词部分预处理部分训练部分遇到的问题问题1可能遇到的问题问题1问题2前言 本文是使用 fairseq 做 Bart 预训练任务的踩坑记录huggingface没有提供 Bart 预训练的代码 facebookresearch/fairseq: Facebook AI Research Sequence-to-Sequence…...
n阶数字回转方阵 ← 模拟法
【问题描述】 请编程输出如下数字回旋方阵。 【算法代码】 #include <bits/stdc.h> using namespace std;const int maxn100; int z[maxn][maxn];void matrix(int n) {int num2;z[0][0]1;int i0,j1;while(i<n && j<n) {while(i<j) z[i][j]num;while(j&…...
【人工智能AI】二、NoSQL 基础知识《NoSQL 企业级基础入门与进阶实战》
写一篇介绍 NoSQL 基础知识的技术文章,分5个章节,每个章节细分到3级目录,重点介绍一下NoSQL 数据模型,NoSQL 数据库架构,NoSQL 数据库特性等,不少于2000字。 NoSQL 基础知识 NoSQL(Not Only SQ…...
Camera Rolling Shutter和Global Shutter的区别
卷帘快门(Rolling Shutter)与全局快门(Global Shutter)的区别 什么是快门 快门是照相机用来控制感光片有效曝光时间的机构。 快门是照相机的一个重要组成部分,它的结构、形式及功能是衡量照相机档次的一个重要因素。 …...
模版之AnyType
title: 模版之AnyType date: 2023-02-19 21:49:53 permalink: /pages/54a0bf/ categories: 通用领域编程语言C tags:C元编程 author: name: zhengzhibing link: https://azmddy.top/pages/54a0bf/ 模版之AnyType 在研究C的编译期反射时,发现了AnyType很有意思。 首…...
跨链模式:多链互操作架构与性能扩展方案
跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层…...
数据库分批入库
今天在工作中,遇到一个问题,就是分批查询的时候,由于批次过大导致出现了一些问题,一下是问题描述和解决方案: 示例: // 假设已有数据列表 dataList 和 PreparedStatement pstmt int batchSize 1000; // …...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
【笔记】WSL 中 Rust 安装与测试完整记录
#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统:Ubuntu 24.04 LTS (WSL2)架构:x86_64 (GNU/Linux)Rust 版本:rustc 1.87.0 (2025-05-09)Cargo 版本:cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
海云安高敏捷信创白盒SCAP入选《中国网络安全细分领域产品名录》
近日,嘶吼安全产业研究院发布《中国网络安全细分领域产品名录》,海云安高敏捷信创白盒(SCAP)成功入选软件供应链安全领域产品名录。 在数字化转型加速的今天,网络安全已成为企业生存与发展的核心基石,为了解…...
