PyTorch学习笔记(十三)——现有网络模型的使用及修改
以分类模型的VGG为例
vgg16_false = torchvision.models.vgg16(weights=False)
vgg16_true = torchvision.models.vgg16(weights=True)
- 设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的
- 设置为 True 时,网络模型中的参数在数据集上是训练好的,能达到比较好的效果
print(vgg16_true)
VGG((features): Sequential(
# 输入图片先经过卷积,输入是3通道的、输出是64通道的,卷积核大小是3×3的(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
# 非线性(1): ReLU(inplace=True)
# 卷积、非线性、池化...(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(3): ReLU(inplace=True)(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(6): ReLU(inplace=True)(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(8): ReLU(inplace=True)(9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU(inplace=True)(12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(13): ReLU(inplace=True)(14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(15): ReLU(inplace=True)(16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(18): ReLU(inplace=True)(19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(20): ReLU(inplace=True)(21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(22): ReLU(inplace=True)(23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)(24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(25): ReLU(inplace=True)(26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(27): ReLU(inplace=True)(28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(29): ReLU(inplace=True)(30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False))(avgpool): AdaptiveAvgPool2d(output_size=(7, 7))(classifier): Sequential((0): Linear(in_features=25088, out_features=4096, bias=True)(1): ReLU(inplace=True)(2): Dropout(p=0.5, inplace=False)(3): Linear(in_features=4096, out_features=4096, bias=True)(4): ReLU(inplace=True)(5): Dropout(p=0.5, inplace=False)
# 最后线性层输出为1000(vgg16也是一个分类模型,能分出1000个类别)(6): Linear(in_features=4096, out_features=1000, bias=True))
)
CIFAR10 把数据分成了10类,而 vgg16 模型把数据分成了 1000 类,如何应用这个网络模型呢?
- 方法1:把最后线性层的 out_features 从1000改为10
- 方法2:在最后的线性层下面再加一层,in_features为1000,out_features为10
利用现有网络去改动它的结构,避免写 vgg16。很多框架会把 vgg16 当做前置的网络结构,提取一些特殊的特征,再在后面加一些网络结构,实现功能。
方法2:添加
vgg16_true.classifier.add_module("add_linear",nn.Linear(1000,10))
print(vgg16_true)
方法1:修改
vgg16_false.classifier[6] = nn.Linear(4096,10)
print(vgg16_false)
相关文章:

PyTorch学习笔记(十三)——现有网络模型的使用及修改
以分类模型的VGG为例 vgg16_false torchvision.models.vgg16(weightsFalse) vgg16_true torchvision.models.vgg16(weightsTrue) 设置为 False 的情况,相当于网络模型中的参数都是初始化的、默认的设置为 True 时,网络模型中的参数在数据集上是训练好…...

Python爬虫的scrapy的学习(学习于b站尚硅谷)
目录 一、scrapy 1. scrapy的安装 (1)什么是scrapy (2)scrapy的安装 2. scrapy的基本使用 (1)scrap的使用步骤 (2)代码的演示 3. scrapy之58同城项目结构和基本方法&…...
“深入解析JVM:揭秘Java虚拟机的工作原理“
标题:深入解析JVM:揭秘Java虚拟机的工作原理 摘要:本文将深入解析Java虚拟机(JVM)的工作原理,探讨其内部结构和运行机制。我们将介绍JVM的组成部分、类加载过程、内存管理、垃圾回收、即时编译等关键概念&…...

【数据结构与算法】十大经典排序算法-归并排序
🌟个人博客:www.hellocode.top 🏰Java知识导航:Java-Navigate 🔥CSDN:HelloCode. 🌞知乎:HelloCode 🌴掘金:HelloCode ⚡如有问题,欢迎指正&#…...

基于深度学习创建-表情符号--附源码
表情符号深度学习概述 如今,我们使用多种表情符号或头像来表达我们的心情或感受。它们充当人类的非语言线索。它们成为情感识别、在线聊天、品牌情感、产品评论等的关键部分。针对表情符号驱动的故事讲述的数据科学研究不断增加。 从图像中检测人类情绪非常流行,这可能是由…...

.netcore grpc的proto文件字段详解
一、.proto文件字段概述 grpc的接口传输参数都是根据.proto文件约定的字段格式进行传输的grpc提供了多种类型字段;主要包括标量值类型(基础类型)、日期时间、可为null类型、字节、列表、字典、Any类型(任意类型)、One…...

带你了解建堆的时间复杂度
目录 用向上调整建堆的时间复杂度 1.向上调整建堆的时间复杂度O(N*logN) 2.数学论证 3.相关代码 用向下调整建堆的时间复杂度 1.建堆的时间复杂度为O(N) 2.数学论证 3.相关代码 完结撒花✿✿ヽ(▽)ノ✿✿ 博主建议:面试的时候可能会被面试官问到建堆时间复杂度的证明过…...
人工智能原理(6)
目录 一、机器学习概述 1、学习和机器学习 2、学习系统 3、机器学习发展简史 4、机器学习分类 二、归纳学习 1、归纳学习的基本概念 2、变型空间学习 3、归纳偏置 三、决策树 1、决策树组成 2、决策树的构造算法CLS 3、ID3 4、决策树的偏置 四、基于实例的学习…...
单片机模块化编程文件创建流程
一、在工程文件夹下创建一个新的文件夹,命名为“ModulesCodesFiles”,译为“模块化代码文件”,用于存放所有模块化代码文件。 二、在“ModulesCodesFiles”文件夹下为每个模块创建一个新的文件夹,命名为模块的名称,例…...
docker image
docker image 1. 由来 docker image是Docker容器管理工具中的一个命令,用于管理和操作Docker镜像。 2. 常见五种示例命令和说明 以下是docker image的常见示例命令及其说明: 示例一:列出所有镜像 docker image ls描述:使用d…...
力扣75——单调栈
总结leetcode75中的单调栈算法题解题思路。 上一篇:力扣75——区间集合 力扣75——单调栈 1 每日温度2 股票价格跨度1 - 2 解题总结 1 每日温度 题目: 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer &…...
Webpack和Parcel详解
构建工具和打包器是在开发过程中帮助组织、优化和打包项目的工具。它们可以处理依赖管理、资源优化、代码转换等任务,从而使开发流程更高效。以下是关于构建工具和打包器的一些指导: **Webpack:** Webpack 是一个功能强大的模块打包器&#…...

linux系统服务学习(六)FTP服务学习
文章目录 FTP、NFS、SAMBA系统服务一、FTP服务概述1、FTP服务介绍2、FTP服务的客户端工具3、FTP的两种运行模式(了解)☆ 主动模式☆ 被动模式 4、搭建FTP服务(重要)5、FTP的配置文件详解(重要) 二、FTP任务…...

7.原 型
7.1原型 【例如】 另外- this指向: 构造函数和原型对象中的this都指向实例化的对象 7.2 constructor属性 每个原型对象里面都有个constructor属性( constructor构造函数) 作用:该属性指向该原型对象的构造函数 使用场景: 如果有多个对象的方法&#…...

【图像分类】理论篇(2)经典卷积神经网络 Lenet~Resenet
目录 1、卷积运算 2、经典卷积神经网络 2.1 Lenet 网络构架 代码实现 2.2 Alexnet 网络构架 代码实现 2.3 VGG VGG16网络构架 代码实现 2.4 ResNet ResNet50网络构架 代码实现 1、卷积运算 在二维卷积运算中,卷积窗口从输入张量的左上角开始ÿ…...

C++系列-内存模型
内存模型 内存模型四个区代码区全局区栈区堆区内存开辟和释放在堆区开辟数组 内存模型四个区 不同区域存放的数据生命周期是不同的,更为灵活。 代码区:存放函数体的二进制代码,操作系统管理。全局区:存放全局变量,常…...
[管理与领导-30]:IT基层管理者 - 人的管理 - 向上管理,管理好你的上司,职业发展事半功倍。什么样的上司不值得跟随?
目录 前言: 一、什么是向上管理 二、为什么要向上管理 三、如何进行向上管理 四、向上管理的注意事项 五、向上管理的忌讳 六、向上管理常犯的错 七、如何帮助上司解决他关心的问题 7.1 如何帮助上司解决他关心的问题 7.2 如何帮助上司降低压力 八、什么…...

Java进阶篇--迭代器模式
目录 同步迭代器(Synchronous Iterator): Iterator 接口 常用方法: 注意: 扩展小知识: 异步迭代器(Asynchronous Iterator): 常用的方法 注意: 总结:…...

【CAM】CAM(Class Activation Mapping)——可视化CNN的特征定位
文章目录 一、CAM(Class Activation Mapping)二、CAM技术实现2.1 网络修改2.2 微调2.2 特征提取 三、总结Reference 完整代码见Github :https://github.com/capsule2077/CAM-Visualization ,如果有用可以点个Star,谢谢! 一、CAM(C…...
Maven教程_编程入门自学教程_菜鸟教程-免费教程分享
教程简介 Maven 是一款基于 Java 平台的项目管理和整合工具,它将项目的开发和管理过程抽象成一个项目对象模型(POM)。开发人员只需要做一些简单的配置,Maven 就可以自动完成项目的编译、测试、打包、发布以及部署等工作。Maven 是…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...

Module Federation 和 Native Federation 的比较
前言 Module Federation 是 Webpack 5 引入的微前端架构方案,允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...