回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图);
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现CSO-BP布谷鸟优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)效果一览…...
JavaScript中的事件冒泡和事件捕获机制
聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 事件冒泡和事件捕获机制⭐ 事件冒泡(Event Bubbling)⭐ 事件捕获(Event Capturing)⭐ 停止事件传播⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或…...
秋招面经——结合各方面试经验
Mysql mysql事务 共享锁与排他锁 共享锁:允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。(读都允许读,但我在读不允许你去改) 排他锁:允许一个事务去读一行,阻止其他事务获得相同…...
Python random模块用法整理
随机数在计算机科学领域扮演着重要的角色,用于模拟真实世界的随机性、数据生成、密码学等多个领域。Python 中的 random 模块提供了丰富的随机数生成功能,本文整理了 random 模块的使用。 文章目录 Python random 模块注意事项Python random 模块的内置…...
【Redis从头学-5】Redis中的List数据类型实战场景之天猫热销榜单
🧑💻作者名称:DaenCode 🎤作者简介:啥技术都喜欢捣鼓捣鼓,喜欢分享技术、经验、生活。 😎人生感悟:尝尽人生百味,方知世间冷暖。 📖所属专栏:Re…...
基于Python的HTTP代理爬虫开发初探
前言 随着互联网的发展,爬虫技术已经成为了信息采集、数据分析的重要手段。然而在进行爬虫开发的过程中,由于个人或机构的目的不同,也会面临一些访问限制或者防护措施。这时候,使用HTTP代理爬虫可以有效地解决这些问题࿰…...
时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现WOA-…...
每日一题之二进制中1的个数
二进制中1的个数 问题描述: 输入一个整数 n ,输出该数 32 位二进制表示中 1 的个数。其中负数用补码表示。 科普一下有符号数的三种表示:原码、反码和补码,可能有时候遗忘了。 真值:带有符号位的机器数(一…...
8.17校招 内推 面经
绿泡泡: neituijunsir 交流裙,内推/实习/校招汇总表格 1、校招 | 腾讯2024校园招聘全面启动(内推) 校招 | 腾讯2024校园招聘全面启动(内推) 2、校招 | 大华股份2024届全球校园招聘正式启动(内推) 校招 | 大华股份2024届全球校园招聘正式启动(内推) …...
VScode搭建Opencv(C++开发环境)
VScode配置Opencv 一、 软件版本二 、下载软件2.1 MinGw下载2.2 Cmake下载2.3 Opencv下载 三、编译3.1 cmake-gui3.2 make3.3 install 四、 VScode配置4.1 launch.json4.2 c_cpp_properties.json4.3 tasks.json 五、测试 一、 软件版本 cmake :cmake-3.27.2-windows-x86_64 Mi…...
Redis高可用:哨兵机制(Redis Sentinel)详解
目录 1.什么是哨兵机制(Redis Sentinel) 2.哨兵机制基本流程 3.哨兵获取主从服务器信息 4.多个哨兵进行通信 5.主观下线和客观下线 6.哨兵集群的选举 7.新主库的选出 8.故障的转移 9.基于pub/sub机制的客户端事件通知 1.什么是哨兵机制…...
Hadoop小结(上)
最近在学大模型的分布式训练和存储,自己的分布式相关基础比较薄弱,基于深度学习的一切架构皆来源于传统,我总结了之前大数据的分布式解决方案即Hadoop: Why Hadoop Hadoop 的作用非常简单,就是在多计算机集群环境中营…...
ORA-600 ksuloget2 恢复----惜分飞
客户在win 32位的操作系统上调至sga超过2G,数据库运行过程中报ORA-600 ksuloget2错误 Thread 1 cannot allocate new log, sequence 43586 Checkpoint not complete Current log# 1 seq# 43585 mem# 0: D:\ORACLE\ORADATA\ORCL\REDO01.LOG Fri Aug 04 14:57:02 2023 Errors i…...
NLP的tokenization
GPT3.5的tokenization流程如上图所示,以下是chatGPT对BPE算法的解释: BPE(Byte Pair Encoding)编码算法是一种基于统计的无监督分词方法,用于将文本分解为子词单元。它的原理如下: 1. 初始化:将…...
【宝藏系列】一文讲透C语言数组与指针的关系
【宝藏系列】嵌入式 C 语言代码优化技巧【超详细版】 文章目录 【宝藏系列】嵌入式 C 语言代码优化技巧【超详细版】👨🏫前言1️⃣指针1️⃣1️⃣指针的操作1️⃣2️⃣关于指针定义的争议1️⃣3️⃣对教材错误写法的小看法 2️⃣指针和数组的区别2️⃣…...
Jenkins+Jmeter集成自动化接口测试并通过邮件发送测试报告
一、Jenkins的配置 1、新增一个自由风格的项目 2、构建->选择Excute Windows batch command(因为我是在本地尝试的,因此选择的windows) 3、输入步骤: 1. 由于不能拥有相同的jtl文件,因此在每次构建前都需要删除jtl…...
clickhouse入门
clickhouse 1 课程介绍 和hadoop无关,俄罗斯,速度快3 介绍&特点 1 列式存储 在线分析处理。 使用sql进行查询。列式存储更适合查询分析的场景。新增时候有一个寻址的过程。更容易进行压缩行式存储。增删改查都需要的时候。2 DBMS功能 包括ddl,d…...
中间件: ElasticSearch的安装与部署
文档地址: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html 单机部署 创建用户: useradd es chown -R es /opt/soft/ mkdir -p /var/log/elastic chown -R es /var/log/elastic mkdir -p /tmp/elastic chown -R es /tmp…...
LabVIEW模拟化学反应器的工作
LabVIEW模拟化学反应器的工作 近年来,化学反应器在化学和工业过程领域有许多应用。高价值产品是通过混合产品,化学反应,蒸馏和结晶等多种工业过程转换原材料制成的。化学反应器通常用于大型加工行业,例如酿酒厂公司饮料产品的发酵…...
Python基础语法入门(第二十三天)——正则表达式
正则表达式是一种文本模式,用于匹配字符串,它是由字符和特殊字符组成的模式。正则表达式可以用于验证、搜索、替换和提取字符串。其能够应用于各种编程语言和文本处理工具中,如Python、Java、JavaScript等。 正则表达式在线测试工具…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
Mac下Android Studio扫描根目录卡死问题记录
环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中,提示一个依赖外部头文件的cpp源文件需要同步,点…...
Python 包管理器 uv 介绍
Python 包管理器 uv 全面介绍 uv 是由 Astral(热门工具 Ruff 的开发者)推出的下一代高性能 Python 包管理器和构建工具,用 Rust 编写。它旨在解决传统工具(如 pip、virtualenv、pip-tools)的性能瓶颈,同时…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
基于SpringBoot在线拍卖系统的设计和实现
摘 要 随着社会的发展,社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统,主要的模块包括管理员;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...
【 java 虚拟机知识 第一篇 】
目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
