时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
目录
- 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
- 预测效果
- 基本介绍
- 模型描述
- 程序设计
- 学习总结
- 参考资料
预测效果
基本介绍
时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。
模型描述
鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积长短期记忆神经网络(CNN-LSTM)是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的网络结构,能够处理序列数据和空间数据。多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化CNN-LSTM网络进行多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、LSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-LSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-LSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。
程序设计
- 完整源码和数据获取方式1:私信博主回复WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,同等价值程序兑换;
- 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%% 获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%% 更新种群和适应度值pop_new = X_new;fitness = fitness_new;%% 更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%% 得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%% 得到最优值
Best_pos = GBestX;
Best_score = curve(end);%% 得到最优参数
NumOfUnits =abs(round( Best_pos(1,3))); % 最佳神经元个数
InitialLearnRate = Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
%
inputSize = k;
outputSize = 1; %数据输出y的维度
% 参数设置
opts = trainingOptions('adam', ... % 优化算法Adam'MaxEpochs', 20, ... % 最大训练次数'GradientThreshold', 1, ... % 梯度阈值'InitialLearnRate', InitialLearnRate, ... % 初始学习率'LearnRateSchedule', 'piecewise', ... % 学习率调整'LearnRateDropPeriod', 6, ... % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ... % 学习率调整因子'L2Regularization', L2Regularization, ... % 正则化参数'ExecutionEnvironment', 'gpu',... % 训练环境'Verbose', 0, ... % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress'); % 画出曲线
学习总结
该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501
相关文章:

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍模型描述程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现WOA-…...
每日一题之二进制中1的个数
二进制中1的个数 问题描述: 输入一个整数 n ,输出该数 32 位二进制表示中 1 的个数。其中负数用补码表示。 科普一下有符号数的三种表示:原码、反码和补码,可能有时候遗忘了。 真值:带有符号位的机器数(一…...
8.17校招 内推 面经
绿泡泡: neituijunsir 交流裙,内推/实习/校招汇总表格 1、校招 | 腾讯2024校园招聘全面启动(内推) 校招 | 腾讯2024校园招聘全面启动(内推) 2、校招 | 大华股份2024届全球校园招聘正式启动(内推) 校招 | 大华股份2024届全球校园招聘正式启动(内推) …...

VScode搭建Opencv(C++开发环境)
VScode配置Opencv 一、 软件版本二 、下载软件2.1 MinGw下载2.2 Cmake下载2.3 Opencv下载 三、编译3.1 cmake-gui3.2 make3.3 install 四、 VScode配置4.1 launch.json4.2 c_cpp_properties.json4.3 tasks.json 五、测试 一、 软件版本 cmake :cmake-3.27.2-windows-x86_64 Mi…...

Redis高可用:哨兵机制(Redis Sentinel)详解
目录 1.什么是哨兵机制(Redis Sentinel) 2.哨兵机制基本流程 3.哨兵获取主从服务器信息 4.多个哨兵进行通信 5.主观下线和客观下线 6.哨兵集群的选举 7.新主库的选出 8.故障的转移 9.基于pub/sub机制的客户端事件通知 1.什么是哨兵机制…...

Hadoop小结(上)
最近在学大模型的分布式训练和存储,自己的分布式相关基础比较薄弱,基于深度学习的一切架构皆来源于传统,我总结了之前大数据的分布式解决方案即Hadoop: Why Hadoop Hadoop 的作用非常简单,就是在多计算机集群环境中营…...

ORA-600 ksuloget2 恢复----惜分飞
客户在win 32位的操作系统上调至sga超过2G,数据库运行过程中报ORA-600 ksuloget2错误 Thread 1 cannot allocate new log, sequence 43586 Checkpoint not complete Current log# 1 seq# 43585 mem# 0: D:\ORACLE\ORADATA\ORCL\REDO01.LOG Fri Aug 04 14:57:02 2023 Errors i…...

NLP的tokenization
GPT3.5的tokenization流程如上图所示,以下是chatGPT对BPE算法的解释: BPE(Byte Pair Encoding)编码算法是一种基于统计的无监督分词方法,用于将文本分解为子词单元。它的原理如下: 1. 初始化:将…...

【宝藏系列】一文讲透C语言数组与指针的关系
【宝藏系列】嵌入式 C 语言代码优化技巧【超详细版】 文章目录 【宝藏系列】嵌入式 C 语言代码优化技巧【超详细版】👨🏫前言1️⃣指针1️⃣1️⃣指针的操作1️⃣2️⃣关于指针定义的争议1️⃣3️⃣对教材错误写法的小看法 2️⃣指针和数组的区别2️⃣…...

Jenkins+Jmeter集成自动化接口测试并通过邮件发送测试报告
一、Jenkins的配置 1、新增一个自由风格的项目 2、构建->选择Excute Windows batch command(因为我是在本地尝试的,因此选择的windows) 3、输入步骤: 1. 由于不能拥有相同的jtl文件,因此在每次构建前都需要删除jtl…...
clickhouse入门
clickhouse 1 课程介绍 和hadoop无关,俄罗斯,速度快3 介绍&特点 1 列式存储 在线分析处理。 使用sql进行查询。列式存储更适合查询分析的场景。新增时候有一个寻址的过程。更容易进行压缩行式存储。增删改查都需要的时候。2 DBMS功能 包括ddl,d…...
中间件: ElasticSearch的安装与部署
文档地址: https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html 单机部署 创建用户: useradd es chown -R es /opt/soft/ mkdir -p /var/log/elastic chown -R es /var/log/elastic mkdir -p /tmp/elastic chown -R es /tmp…...

LabVIEW模拟化学反应器的工作
LabVIEW模拟化学反应器的工作 近年来,化学反应器在化学和工业过程领域有许多应用。高价值产品是通过混合产品,化学反应,蒸馏和结晶等多种工业过程转换原材料制成的。化学反应器通常用于大型加工行业,例如酿酒厂公司饮料产品的发酵…...

Python基础语法入门(第二十三天)——正则表达式
正则表达式是一种文本模式,用于匹配字符串,它是由字符和特殊字符组成的模式。正则表达式可以用于验证、搜索、替换和提取字符串。其能够应用于各种编程语言和文本处理工具中,如Python、Java、JavaScript等。 正则表达式在线测试工具…...

山西电力市场日前价格预测【2023-08-20】
日前价格预测 预测明日(2023-08-20)山西电力市场全天平均日前电价为341.71元/MWh。其中,最高日前电价为367.66元/MWh,预计出现在20: 30。最低日前电价为318.47元/MWh,预计出现在04: 15。 价差方向预测 1: 实…...

C++中function,bind,lambda
c11之前,STL中提供了bind1st以及bind2nd绑定器 首先来看一下他们如何使用: 如果我们要对vector中的元素排序,首先会想到sort,比如: void output(const vector<int> &vec) {for (auto v : vec) {cout <&l…...

跟着美团学设计模式(感处)
读了着篇文章之后发现真的是,你的思想,你的思维是真的比比你拥有什么技术要强的。 注 开闭原则 开闭原则(Open-Closed Principle)是面向对象设计中的基本原则之一,它的定义是:一个软件实体应该对扩展开放…...
2023/8/19 小红书 Java 后台开发面经
项目都做了些什么,怎么实现的用Redis实现了什么,Redis是单线程的吗,Redis是单线程的为什么快,IO多路复用模型具体实现,持久化怎么实现的为什么用Kafka,架构是什么样的,Broker、Topic、Partition…...

基于traccar快捷搭建gps轨迹应用
0. 环境 - win10 虚拟机ubuntu18 - i5 ubuntu22笔记本 - USB-GPS模块一台,比如华大北斗TAU1312-232板 - 双笔记本组网设备:路由器,使得win10笔记本ip:192.168.123.x,而i5笔记本IP是192.168.123.215。 - 安卓 手机 1.…...

【深度学习-图像识别】使用fastai对Caltech101数据集进行图像多分类(50行以内的代码就可达到很高准确率)
文章目录 前言fastai介绍数据集介绍 一、环境准备二、数据集处理1.数据目录结构2.导入依赖项2.读入数据3.模型构建3.1 寻找合适的学习率3.2 模型调优 4.模型保存与应用 总结人工智能-图像识别 系列文章目录 前言 fastai介绍 fastai 是一个深度学习库,它为从业人员…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...