回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一…...
元宇宙电商—NFG系统:区块链技术助力商品确权。
在国内,以“数字藏品”之名崛起以来,其与NFT的对比就从未停歇。从上链模式到数据主权,从炒作需求到实际应用,从售卖形式到价值属性,在各种抽丝剥茧般的比较中,围绕两者孰优孰劣的讨论不绝于耳。 NFT的每一…...

【云原生】Docker基本原理及镜像管理
目录 一、Docker概述 1.1 IT架构的演进: 1.2 Docker初始 1.3 容器的特点 1.4 Docker容器与虚拟机的区别 1.5 容器在内核中支持2种重要技术 1.6 Docker核心概念 1)镜像 2)容器 3)仓库 二、安装Docker 2.1 Yum安装Docker…...
Apache Doris大规模数据使用指南
目录 发展历史 架构介绍 弹性MPP架构-极简架构 逻辑架构 基本访问架构 分区 创建单分区表...
RabbitMQ 持久化
通过持久化可以尽量防止在RabbitMQ异常情况下(重启、关闭、宕机)的数据丢失。持久化技术是解决消息存储到队列后的丢失问题,但是通过持久化并不能完全保证消息不丢失。 持久化 交换机持久化队列持久化消息持久化总结 持久化技术可以分为交换机…...

STM32 定时器复习
12MHz晶振的机器周期是1us,因为单片机的一个机器周期由6个状态周期组成,1个机器周期6个状态周期12个时钟周期,因此机器周期为1us。 51单片机常用 for(){__nop(); //执行一个机器周期,若想循环n us,则循环n次。 }软件…...

17-工程化开发 脚手架 Vue CLI
开发Vue的两种方式: 1.核心包传统开发模式: 基于 html/css /js 文件,直接引入核心包,开发 Vue。 2.工程化开发模式: 基于构建工具 (例如: webpack)的环境中开发 Vue。 问题: 1. webpack 配置不简单 2. 雷同的基础配置 3. 缺乏统…...
golang 分布式微服务DAO层构建
构建云原生项目的dao层 配置读写分离的mysql集群 1. 编写yml配置文件 搭建一主二从的mysql集群、单机redis db.yml mysql:source: # 主数据库driverName: mysqlhost: 127.0.0.1port: 3309database: db_tiktokusername: tiktokDBpassword: tiktokDBcharset: utf8mb4replica1…...

Java 项目日志实例:LogBack
点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ LogBack 和 Log4j 都是开源日记工具库,LogBack 是 Log4j 的改良版本,比 Log4j 拥有更多的特性,同时也带来很大性能提升。LogBack 官方建…...

什么是条件get方法?
条件GET方法通常指的是HTTP协议中的"GET"请求,但它带有一些条件,这些条件用于控制服务器是否应该返回请求的资源。这些条件通常使用HTTP标头字段来指定,以便客户端可以告诉服务器在某些条件下是否需要新的或更新的资源。 条件GET方…...
Python爬虫——scrapy_crawlspider读书网
创建crawlspider爬虫文件: scrapy genspider -t crawl 爬虫文件名 爬取的域名scrapy genspider -t crawl read https://www.dushu.com/book/1206.htmlLinkExtractor 链接提取器通过它,Spider可以知道从爬取的页面中提取出哪些链接,提取出的链…...

Spring源码编译-for mac
超详细的spring源码编译 记:编译成功时间:2023.08.19 环境准备: 1.idea 2023.1.1 Community Edition 2.jdk1.8 3.gradlegradle-5.6.4 4.spring源码(版本:spring-framework-v5.2.25.RELEASE) 一.spring源码下载 github 加速网站&…...

视频汇聚平台EasyCVR安防监控视频汇聚平台的FLV视频流在VLC中无法播放的问题解决方案
众所周知,TSINGSEE青犀视频汇聚平台EasyCVR可支持多协议方式接入,包括主流标准协议国标GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。在视频流的处理与分发上,视频监控…...
中间件:RocketMQ安装部署
单机部署 下载 cd /opt/soft/archive wget https://archive.apache.org/dist/rocketmq/4.9.4/rocketmq-all-4.9.4-bin-release.zip unzip -d ../ rocketmq-all-4.9.4-bin-release.zip配置 broker.conf 的brokerIP1 为公网ip 启动命令: nohup sh bin/mqnamesrv &a…...
leetcode-动态规划-42-接雨水
题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1…...
[静态时序分析简明教程(十一)]浅议tcl语言
静态时序分析简明教程-浅议tcl语言 一、写在前面1.1 快速导航链接 二、Tcl基础知识三、Tcl的语言结构3.1 Tcl变量3.2 Tcl表达式与运算符3.3 Tcl的控制流语句3.3.1 列表遍历3.3.2 决策3.3.3 Tcl循环3.3.4 Tcl过程 3.4 其他Tcl命令3.4.1 open/close3.4.2 gets/puts3.4.3 catch3.4…...
大数据-玩转数据-Flink 网站UV统计
一、说明 在实际应用中,我们往往会关注,到底有多少不同的用户访问了网站,所以另外一个统计流量的重要指标是网站的独立访客数(Unique Visitor,UV)。 二、数据准备 package com.lyh.flink06;import lombo…...
3分钟了解下cwnd和TCP拥塞控制算法
文章首发地址 cwnd是什么? cwnd是TCP拥塞控制中的一个重要概念,全称为“congestion window”,也被称为拥塞窗口。它用于限制发送方向网络发送数据的速度,以避免网络拥塞。cwnd是一个动态的值,可以根据网络状况动态调…...

设计模式之状态模式(State)的C++实现
1、状态模式的提出 在组件功能开发过程中,某些对象的状态经常面临变化,不同的状态,其对象的操作行为不同。比如根据状态写的if else条件情况,且这种条件变化是经常变化的,这样的代码不易维护。可以使用状态模式解决这…...

无涯教程-TensorFlow - Keras
Keras易于学习的高级Python库,可在TensorFlow框架上运行,它的重点是理解深度学习技术,如为神经网络创建层,以维护形状和数学细节的概念。框架的创建可以分为以下两种类型- 顺序API功能API 无涯教程将使用Jupyter Notebook执行和…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
【前端异常】JavaScript错误处理:分析 Uncaught (in promise) error
在前端开发中,JavaScript 异常是不可避免的。随着现代前端应用越来越多地使用异步操作(如 Promise、async/await 等),开发者常常会遇到 Uncaught (in promise) error 错误。这个错误是由于未正确处理 Promise 的拒绝(r…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...

初探用uniapp写微信小程序遇到的问题及解决(vue3+ts)
零、关于开发思路 (一)拿到工作任务,先理清楚需求 1.逻辑部分 不放过原型里说的每一句话,有疑惑的部分该问产品/测试/之前的开发就问 2.页面部分(含国际化) 整体看过需要开发页面的原型后,分类一下哪些组件/样式可以复用,直接提取出来使用 (时间充分的前提下,不…...
Docker环境下安装 Elasticsearch + IK 分词器 + Pinyin插件 + Kibana(适配7.10.1)
做RAG自己打算使用esmilvus自己开发一个,安装时好像网上没有比较新的安装方法,然后找了个旧的方法对应试试: 🚀 本文将手把手教你在 Docker 环境中部署 Elasticsearch 7.10.1 IK分词器 拼音插件 Kibana,适配中文搜索…...