当前位置: 首页 > news >正文

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一…...

元宇宙电商—NFG系统:区块链技术助力商品确权。

在国内,以“数字藏品”之名崛起以来,其与NFT的对比就从未停歇。从上链模式到数据主权,从炒作需求到实际应用,从售卖形式到价值属性,在各种抽丝剥茧般的比较中,围绕两者孰优孰劣的讨论不绝于耳。 NFT的每一…...

【云原生】Docker基本原理及镜像管理

目录 一、Docker概述 1.1 IT架构的演进: 1.2 Docker初始 1.3 容器的特点 1.4 Docker容器与虚拟机的区别 1.5 容器在内核中支持2种重要技术 1.6 Docker核心概念 1)镜像 2)容器 3)仓库 二、安装Docker 2.1 Yum安装Docker…...

Apache Doris大规模数据使用指南

目录 发展历史 架构介绍 弹性MPP架构-极简架构 逻辑架构 基本访问架构 分区 创建单分区表...

RabbitMQ 持久化

通过持久化可以尽量防止在RabbitMQ异常情况下(重启、关闭、宕机)的数据丢失。持久化技术是解决消息存储到队列后的丢失问题,但是通过持久化并不能完全保证消息不丢失。 持久化 交换机持久化队列持久化消息持久化总结 持久化技术可以分为交换机…...

STM32 定时器复习

12MHz晶振的机器周期是1us,因为单片机的一个机器周期由6个状态周期组成,1个机器周期6个状态周期12个时钟周期,因此机器周期为1us。 51单片机常用 for(){__nop(); //执行一个机器周期,若想循环n us,则循环n次。 }软件…...

17-工程化开发 脚手架 Vue CLI

开发Vue的两种方式: 1.核心包传统开发模式: 基于 html/css /js 文件,直接引入核心包,开发 Vue。 2.工程化开发模式: 基于构建工具 (例如: webpack)的环境中开发 Vue。 问题: 1. webpack 配置不简单 2. 雷同的基础配置 3. 缺乏统…...

golang 分布式微服务DAO层构建

构建云原生项目的dao层 配置读写分离的mysql集群 1. 编写yml配置文件 搭建一主二从的mysql集群、单机redis db.yml mysql:source: # 主数据库driverName: mysqlhost: 127.0.0.1port: 3309database: db_tiktokusername: tiktokDBpassword: tiktokDBcharset: utf8mb4replica1…...

Java 项目日志实例:LogBack

点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ LogBack 和 Log4j 都是开源日记工具库,LogBack 是 Log4j 的改良版本,比 Log4j 拥有更多的特性,同时也带来很大性能提升。LogBack 官方建…...

什么是条件get方法?

条件GET方法通常指的是HTTP协议中的"GET"请求,但它带有一些条件,这些条件用于控制服务器是否应该返回请求的资源。这些条件通常使用HTTP标头字段来指定,以便客户端可以告诉服务器在某些条件下是否需要新的或更新的资源。 条件GET方…...

Python爬虫——scrapy_crawlspider读书网

创建crawlspider爬虫文件: scrapy genspider -t crawl 爬虫文件名 爬取的域名scrapy genspider -t crawl read https://www.dushu.com/book/1206.htmlLinkExtractor 链接提取器通过它,Spider可以知道从爬取的页面中提取出哪些链接,提取出的链…...

Spring源码编译-for mac

超详细的spring源码编译 记:编译成功时间:2023.08.19 环境准备: 1.idea 2023.1.1 Community Edition 2.jdk1.8 3.gradlegradle-5.6.4 4.spring源码(版本:spring-framework-v5.2.25.RELEASE) 一.spring源码下载 github 加速网站&…...

视频汇聚平台EasyCVR安防监控视频汇聚平台的FLV视频流在VLC中无法播放的问题解决方案

众所周知,TSINGSEE青犀视频汇聚平台EasyCVR可支持多协议方式接入,包括主流标准协议国标GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。在视频流的处理与分发上,视频监控…...

中间件:RocketMQ安装部署

单机部署 下载 cd /opt/soft/archive wget https://archive.apache.org/dist/rocketmq/4.9.4/rocketmq-all-4.9.4-bin-release.zip unzip -d ../ rocketmq-all-4.9.4-bin-release.zip配置 broker.conf 的brokerIP1 为公网ip 启动命令: nohup sh bin/mqnamesrv &a…...

leetcode-动态规划-42-接雨水

题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1…...

[静态时序分析简明教程(十一)]浅议tcl语言

静态时序分析简明教程-浅议tcl语言 一、写在前面1.1 快速导航链接 二、Tcl基础知识三、Tcl的语言结构3.1 Tcl变量3.2 Tcl表达式与运算符3.3 Tcl的控制流语句3.3.1 列表遍历3.3.2 决策3.3.3 Tcl循环3.3.4 Tcl过程 3.4 其他Tcl命令3.4.1 open/close3.4.2 gets/puts3.4.3 catch3.4…...

大数据-玩转数据-Flink 网站UV统计

一、说明 在实际应用中,我们往往会关注,到底有多少不同的用户访问了网站,所以另外一个统计流量的重要指标是网站的独立访客数(Unique Visitor,UV)。 二、数据准备 package com.lyh.flink06;import lombo…...

3分钟了解下cwnd和TCP拥塞控制算法

文章首发地址 cwnd是什么? cwnd是TCP拥塞控制中的一个重要概念,全称为“congestion window”,也被称为拥塞窗口。它用于限制发送方向网络发送数据的速度,以避免网络拥塞。cwnd是一个动态的值,可以根据网络状况动态调…...

设计模式之状态模式(State)的C++实现

1、状态模式的提出 在组件功能开发过程中,某些对象的状态经常面临变化,不同的状态,其对象的操作行为不同。比如根据状态写的if else条件情况,且这种条件变化是经常变化的,这样的代码不易维护。可以使用状态模式解决这…...

无涯教程-TensorFlow - Keras

Keras易于学习的高级Python库,可在TensorFlow框架上运行,它的重点是理解深度学习技术,如为神经网络创建层,以维护形状和数学细节的概念。框架的创建可以分为以下两种类型- 顺序API功能API 无涯教程将使用Jupyter Notebook执行和…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配

AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

Rust 开发环境搭建

环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu ​ 2、Hello World fn main() { println…...

拟合问题处理

在机器学习中,核心任务通常围绕模型训练和性能提升展开,但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正: 一、机器学习的核心任务框架 机…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema,不需要复杂的查询,只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 :在几秒钟…...

构建Docker镜像的Dockerfile文件详解

文章目录 前言Dockerfile 案例docker build1. 基本构建2. 指定 Dockerfile 路径3. 设置构建时变量4. 不使用缓存5. 删除中间容器6. 拉取最新基础镜像7. 静默输出完整示例 docker runDockerFile 入门syntax指定构造器FROM基础镜像RUN命令注释COPY复制ENV设置环境变量EXPOSE暴露端…...