回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览
基本介绍
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一…...
元宇宙电商—NFG系统:区块链技术助力商品确权。
在国内,以“数字藏品”之名崛起以来,其与NFT的对比就从未停歇。从上链模式到数据主权,从炒作需求到实际应用,从售卖形式到价值属性,在各种抽丝剥茧般的比较中,围绕两者孰优孰劣的讨论不绝于耳。 NFT的每一…...

【云原生】Docker基本原理及镜像管理
目录 一、Docker概述 1.1 IT架构的演进: 1.2 Docker初始 1.3 容器的特点 1.4 Docker容器与虚拟机的区别 1.5 容器在内核中支持2种重要技术 1.6 Docker核心概念 1)镜像 2)容器 3)仓库 二、安装Docker 2.1 Yum安装Docker…...
Apache Doris大规模数据使用指南
目录 发展历史 架构介绍 弹性MPP架构-极简架构 逻辑架构 基本访问架构 分区 创建单分区表...
RabbitMQ 持久化
通过持久化可以尽量防止在RabbitMQ异常情况下(重启、关闭、宕机)的数据丢失。持久化技术是解决消息存储到队列后的丢失问题,但是通过持久化并不能完全保证消息不丢失。 持久化 交换机持久化队列持久化消息持久化总结 持久化技术可以分为交换机…...

STM32 定时器复习
12MHz晶振的机器周期是1us,因为单片机的一个机器周期由6个状态周期组成,1个机器周期6个状态周期12个时钟周期,因此机器周期为1us。 51单片机常用 for(){__nop(); //执行一个机器周期,若想循环n us,则循环n次。 }软件…...

17-工程化开发 脚手架 Vue CLI
开发Vue的两种方式: 1.核心包传统开发模式: 基于 html/css /js 文件,直接引入核心包,开发 Vue。 2.工程化开发模式: 基于构建工具 (例如: webpack)的环境中开发 Vue。 问题: 1. webpack 配置不简单 2. 雷同的基础配置 3. 缺乏统…...
golang 分布式微服务DAO层构建
构建云原生项目的dao层 配置读写分离的mysql集群 1. 编写yml配置文件 搭建一主二从的mysql集群、单机redis db.yml mysql:source: # 主数据库driverName: mysqlhost: 127.0.0.1port: 3309database: db_tiktokusername: tiktokDBpassword: tiktokDBcharset: utf8mb4replica1…...

Java 项目日志实例:LogBack
点击下方关注我,然后右上角点击...“设为星标”,就能第一时间收到更新推送啦~~~ LogBack 和 Log4j 都是开源日记工具库,LogBack 是 Log4j 的改良版本,比 Log4j 拥有更多的特性,同时也带来很大性能提升。LogBack 官方建…...

什么是条件get方法?
条件GET方法通常指的是HTTP协议中的"GET"请求,但它带有一些条件,这些条件用于控制服务器是否应该返回请求的资源。这些条件通常使用HTTP标头字段来指定,以便客户端可以告诉服务器在某些条件下是否需要新的或更新的资源。 条件GET方…...
Python爬虫——scrapy_crawlspider读书网
创建crawlspider爬虫文件: scrapy genspider -t crawl 爬虫文件名 爬取的域名scrapy genspider -t crawl read https://www.dushu.com/book/1206.htmlLinkExtractor 链接提取器通过它,Spider可以知道从爬取的页面中提取出哪些链接,提取出的链…...

Spring源码编译-for mac
超详细的spring源码编译 记:编译成功时间:2023.08.19 环境准备: 1.idea 2023.1.1 Community Edition 2.jdk1.8 3.gradlegradle-5.6.4 4.spring源码(版本:spring-framework-v5.2.25.RELEASE) 一.spring源码下载 github 加速网站&…...

视频汇聚平台EasyCVR安防监控视频汇聚平台的FLV视频流在VLC中无法播放的问题解决方案
众所周知,TSINGSEE青犀视频汇聚平台EasyCVR可支持多协议方式接入,包括主流标准协议国标GB28181、RTSP/Onvif、RTMP等,以及厂家私有协议与SDK接入,包括海康Ehome、海大宇等设备的SDK等。在视频流的处理与分发上,视频监控…...
中间件:RocketMQ安装部署
单机部署 下载 cd /opt/soft/archive wget https://archive.apache.org/dist/rocketmq/4.9.4/rocketmq-all-4.9.4-bin-release.zip unzip -d ../ rocketmq-all-4.9.4-bin-release.zip配置 broker.conf 的brokerIP1 为公网ip 启动命令: nohup sh bin/mqnamesrv &a…...
leetcode-动态规划-42-接雨水
题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1…...
[静态时序分析简明教程(十一)]浅议tcl语言
静态时序分析简明教程-浅议tcl语言 一、写在前面1.1 快速导航链接 二、Tcl基础知识三、Tcl的语言结构3.1 Tcl变量3.2 Tcl表达式与运算符3.3 Tcl的控制流语句3.3.1 列表遍历3.3.2 决策3.3.3 Tcl循环3.3.4 Tcl过程 3.4 其他Tcl命令3.4.1 open/close3.4.2 gets/puts3.4.3 catch3.4…...
大数据-玩转数据-Flink 网站UV统计
一、说明 在实际应用中,我们往往会关注,到底有多少不同的用户访问了网站,所以另外一个统计流量的重要指标是网站的独立访客数(Unique Visitor,UV)。 二、数据准备 package com.lyh.flink06;import lombo…...
3分钟了解下cwnd和TCP拥塞控制算法
文章首发地址 cwnd是什么? cwnd是TCP拥塞控制中的一个重要概念,全称为“congestion window”,也被称为拥塞窗口。它用于限制发送方向网络发送数据的速度,以避免网络拥塞。cwnd是一个动态的值,可以根据网络状况动态调…...

设计模式之状态模式(State)的C++实现
1、状态模式的提出 在组件功能开发过程中,某些对象的状态经常面临变化,不同的状态,其对象的操作行为不同。比如根据状态写的if else条件情况,且这种条件变化是经常变化的,这样的代码不易维护。可以使用状态模式解决这…...

无涯教程-TensorFlow - Keras
Keras易于学习的高级Python库,可在TensorFlow框架上运行,它的重点是理解深度学习技术,如为神经网络创建层,以维护形状和数学细节的概念。框架的创建可以分为以下两种类型- 顺序API功能API 无涯教程将使用Jupyter Notebook执行和…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...