回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
目录
- 回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
- 效果一览
- 基本介绍
- 程序设计
- 参考资料
效果一览



基本介绍
回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。
程序设计
- 完整源码和数据获取方式:私信回复MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 导入数据
res = xlsread('data.xlsx');%% 划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%% 仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%% 相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718
相关文章:
回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效…...
电商增强现实3D模型优化需要关注的4个方面
到目前为止,AR技术已经发展到足以在更广泛的范围内实施。 在电子商务中,这项技术有望提供更令人兴奋的购物体验。 为了实现这一目标,在这篇博客中,我将介绍如何针对电子商务中的 AR 优化 3D 模型。 推荐:用 NSDT编辑器…...
【Effective Python】读书笔记-04推导与生成
1. 用列表推导取代 map 与 filter 因为不需要写 lambda 表达式。 可以很容易地跳过原列表中的某些数据。 # 列表推导l [i for i in range(5)] # [0, 1, 2, 3, 4] print(l)# 字典推导d {i: i ** 2 for i in range(5)} # {0: 0, 1: 1, 2: 4, 3: 9, 4: 16} print(d)2. 控制推导…...
Android内存泄漏总结和性能优化技巧
我们在开发安卓应用时,性能优化是非常重要的方面。一方面,优化可以提高应用的响应速度、降低卡顿率和提升应用流畅度,从而提升用户体验;另一方面,优化也可以减少应用的资源占用,提高应用的稳定性和安全性&a…...
leetcode 125.验证回文串
⭐️ 题目描述 🌟 leetcode链接:https://leetcode.cn/problems/valid-palindrome/ 思路: 这道题只判断字符串中的字母与数字是否是回文。虽然小写大写字母可以互相转换,但是里面是含有数字字符的,所以先统一ÿ…...
ZooKeeper客户端使用与经典应用场景
概述 ZooKeeper的应用场景依赖于ZNode节点特性和Watch监听机制。 应用场景 数据发布/订阅 常用于实现配置中心,类似的有nacos。数据发布/订阅的一个常见的场景是配置中心,发布者把数据发布到ZooKeeper的一个或一系列的节点上,供订阅者进行…...
标签准备——labelIMG工具使用——自动化标注
在实际生产项目中,为了提升目标识别的准确性,我们往往需要3000-5000张图片进行标注。而直接参与过标注的人都有一个共同的感觉,就是标注是一个简单、枯燥、无聊且十分耗时费力的差事。为此,我们可以在有了初步训练模型的基础上,采用更加自动化的方式进行标注,届时,你讲不…...
关于vant2 组件van-dropdown-item,在IOS手机上,特定条件下无法点击问题的探讨
情景重现 先贴有问题的代码 <template><div :class"showBar ? homeContain : homeContain-nobar"><div class"contant" id"content"><van-dialog v-model"loading" :before-close"onBeforeClose" :…...
一零七一、Spring大海捞针篇
IOC,AOP? IOC(控制反转)是一种设计模式,它将对象的创建、依赖注入和管理交给了容器来完成,而不是由开发者手动管理。 这样做的好处是降低了组件之间的耦合度,提高了代码的可维护性和可扩展性。 …...
请求并发控制
请求并发数量控制 并发限制 要求:多个请求做并发限制,请求完成后执行回调 思路: 首次循环启动能够执行的任务 取出能执行的任务推入执行器执行 执行器更新当前并发数,并且再请求完成时继续取出任务推入执行器 当所有请求完…...
创建密码库/创建用户帐户/更新 Ansible 库的密钥/ 配置cron作业
目录 创建密码库 创建用户帐户 更新 Ansible 库的密钥 配置cron作业 创建密码库 按照下方所述,创建一个 Ansible 库来存储用户密码: 库名称为 /home/curtis/ansible/locker.yml 库中含有两个变量,名称如下: pw_developer&#…...
vue实现穿梭框,ctrl多选,shift多选
效果图 代码 <template><div class"container"><!--左侧--><div><div class"title">{{ titles[0] }}</div><div class"layerContainer"><div v-for"item in leftLayerArray":key"…...
Win11中zookeeper的下载与安装
下载步骤 打开浏览器,前往 Apache ZooKeeper 的官方网站:zookeeper官方。在主页上点击"Project"选项,并点击"Release" 点击Download按钮,跳转到下载目录 在下载页面中,选择版本号,并点…...
ubuntu22.04 找不到串口,串口ttyusb时断时续的问题(拔插以后能检测到,过会儿就检测不到了)
1. 问题描述 ubuntu22.04的PC,在连接USB串口的时候,有时能找到ttyUSB0,有时找不到,如下: base) airsairs-Precision-3630-Tower:~$ ls -l /dev/ttyUSB* crwxrwxrwx 1 root dialout 188, 0 Aug 17 16:36 /dev/ttyUSB0 (base) air…...
Pinia基础教程
Pinia wiki Pinia 起始于 2019 年 11 月左右的一次实验,其目的是设计一个拥有组合式 API 的 Vue 状态管理库。从那时起,我们就倾向于同时支持 Vue 2 和 Vue 3,并且不强制要求开发者使用组合式 API,我们的初心至今没有改变。除了安…...
【NOIP】标题统计
author:&Carlton tags:模拟,字符串 topic:【NOIP】标题统计 language:C website:P5015 [NOIP2018 普及组] 标题统计 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) date:2023年8月20日…...
BOXTRADE-天启量化分析平台 系统功能预览
BOXTRADE-天启量化分析平台 系统功能预览 系统功能预览 1.登录 首页 参考登录文档 2. A股 行情与策略分析 2.1 A股股票列表 可以筛选和搜索 2.2 A股行情及策略回测 2.2.1 行情数据提供除权和前复权,后复权数据;外链公司信息 2.2.2 内置策略执行结果…...
解决Kibana(OpenSearch)某些字段无法搜索问题
背景 最近在OpenSearch查看线上日志的时候,发现某个索引下有些字段无法直接在界面上筛选,搜索到也不高亮,非常的不方便,就像下面这样 字段左侧两个筛选按钮禁用了无法点击,提示 Unindexed fields can not be searched…...
代码随想录训练营day15|102.层序遍历 226.翻转二叉树 101.对称二叉树
TOC 前言 代码随想录算法训练营day15 一、Leetcode 102.层序遍历 1.题目 给你二叉树的根节点 root ,返回其节点值的 层序遍历 。 (即逐层地,从左到右访问所有节点)。 示例 1: 输入:root [3,9,20,null,null,15,7] 输出:…...
Nginx 配置https以及wss
一、申请https证书 可以在阿里云申请免费ssl证书,一年更换一次 二、Nginx配置ssl upstream tomcat_web{server 127.0.0.1:8080; }server {listen 443 ssl;server_name www.xxx.com;## 配置日志文件access_log /var/log/nginx/web/xxx-ssl-access.log main;er…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
VTK如何让部分单位不可见
最近遇到一个需求,需要让一个vtkDataSet中的部分单元不可见,查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行,是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示,主要是最后一个参数,透明度…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
JVM 内存结构 详解
内存结构 运行时数据区: Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器: 线程私有,程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 每个线程都有一个程序计数…...
自然语言处理——文本分类
文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益(IG) 分类器设计贝叶斯理论:线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别, 有单标签多类别文本分类和多…...
ZYNQ学习记录FPGA(二)Verilog语言
一、Verilog简介 1.1 HDL(Hardware Description language) 在解释HDL之前,先来了解一下数字系统设计的流程:逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端,在这个过程中就需要用到HDL,正文…...
__VUE_PROD_HYDRATION_MISMATCH_DETAILS__ is not explicitly defined.
这个警告表明您在使用Vue的esm-bundler构建版本时,未明确定义编译时特性标志。以下是详细解释和解决方案: 问题原因: 该标志是Vue 3.4引入的编译时特性标志,用于控制生产环境下SSR水合不匹配错误的详细报告1使用esm-bundler…...
深入浅出JavaScript中的ArrayBuffer:二进制数据的“瑞士军刀”
深入浅出JavaScript中的ArrayBuffer:二进制数据的“瑞士军刀” 在JavaScript中,我们经常需要处理文本、数组、对象等数据类型。但当我们需要处理文件上传、图像处理、网络通信等场景时,单纯依赖字符串或数组就显得力不从心了。这时ÿ…...
Qt学习及使用_第1部分_认识Qt---Qt开发基本流程
前言 学以致用,通过QT框架的学习,一边实践,一边探索编程的方方面面. 参考书:<Qt 6 C开发指南>(以下称"本书") 标识说明:概念用粗体倾斜.重点内容用(加粗黑体)---重点内容(红字)---重点内容(加粗红字), 本书原话内容用深蓝色标识,比较重要的内容用加粗倾…...
