当前位置: 首页 > news >正文

[机器学习]特征工程:主成分分析

目录

主成分分析

1、简介

2、帮助理解

3、API调用

4、案例


本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇:

探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客icon-default.png?t=N6B9https://blog.csdn.net/qq_60735796/article/details/132339011

感谢大家支持!您的一键三连,就是我创作的最大动力!

主成分分析

1、简介

主成分分析(Principal Component Analysis,PCA)是一种常用的数据降维和特征提取技术用于将高维数据转化为低维表示,同时保留数据的主要特征。

它通过线性变换将原始特征投影到新的坐标轴上,使得投影后的特征具有最大的方差,从而达到降低数据维度的目的。

PCA 的主要思想是寻找数据中的主要方向,即数据的主成分,这些主成分是数据变化最大的方向。通过保留最重要的主成分,可以将数据的维度减少,从而减少存储和计算的成本,同时可以降低数据中的噪声和冗余信息,提高模型的泛化能力。

PCA 的工作步骤如下:

  1. 标准化数据
  2. 计算数据的协方差矩阵。
  3. 对协方差矩阵进行特征值分解,得到特征值和特征向量。
  4. 将特征值按从大到小的顺序排列,选择前几个特征值对应的特征向量作为主成分。
  5. 将原始数据投影到选定的主成分上,得到降维后的数据。

PCA 在许多领域中有广泛的应用,包括数据可视化、特征工程、模式识别、图像处理等。它可以帮助我们理解数据的内在结构,去除冗余信息,提高模型的效果和效率。

需要注意的是,PCA 假设数据分布在高维空间中呈线性关系,因此在存在非线性关系的情况下,PCA 可能效果不佳。在这种情况下,可以考虑使用非线性降维技术,如核主成分分析(Kernel PCA)。

2、帮助理解

如何使用最少的特征,保留原始的主成分,如图所示:

3、API调用

sklearn.decomposition.PCA(n_components=None)

将数据分解为较低维数空间

n_components:

小数:表示保留百分之多少的信息

整数:减少到多少特征

PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]

返回值:转换后指定维度的array

# -*- coding: utf-8 -*-
# @Author:︶ㄣ释然
# @Time: 2023/8/16 15:42
from sklearn.decomposition import PCA'''
sklearn.decomposition.PCA(n_components=None)将数据分解为较低维数空间n_components:小数:表示保留百分之多少的信息整数:减少到多少特征PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]返回值:转换后指定维度的array
'''
def pca_demo():"""对数据进行PCA降维"""data = [[2, 8, 4, 5], [6, 3, 0, 8], [5, 4, 9, 1]]# 1、实例化PCA, 小数——保留多少信息transfer = PCA(n_components=0.9)# 2、调用fit_transformdata1 = transfer.fit_transform(data)print("保留90%的信息,降维结果为:\n", data1)# 1、实例化PCA, 整数——指定降维到的维数transfer2 = PCA(n_components=3)# 2、调用fit_transformdata2 = transfer2.fit_transform(data)print("降维到3维的结果:\n", data2)if __name__ == '__main__':pca_demo()

输出结果:

4、案例

案例:探究用户对物品类别的喜好细分降维

数据如下:

order_products__prior.csv:订单与商品信息

字段:order_id, product_id, add_to_cart_order, reordered

products.csv:商品信息

字段:product_id, product_name, aisle_id, department_id

orders.csv:用户的订单信息

字段:order_id,user_id,eval_set,order_number,….

aisles.csv:商品所属具体物品类别

字段: aisle_id, aisle

步骤:

合并表,使得user_id与aisle在一张表当中

进行交叉表变换

进行降维

代码:

from sklearn.decomposition import PCA
import pandas as pddef data_demo():# 1、获取数据集# ·商品信息- products.csv:# Fields:product_id, product_name, aisle_id, department_id# ·订单与商品信息- order_products__prior.csv:# Fields:order_id, product_id, add_to_cart_order, reordered# ·用户的订单信息- orders.csv:# Fields:order_id, user_id,eval_set, order_number,order_dow, order_hour_of_day, days_since_prior_order# ·商品所属具体物品类别- aisles.csv:# Fields:aisle_id, aisleproducts = pd.read_csv("data/instacart/products.csv")order_products = pd.read_csv("data/instacart/order_products__prior.csv")orders = pd.read_csv("data/instacart/orders.csv")aisles = pd.read_csv("data/instacart/aisles.csv")# 2、合并表,将user_id和aisle放在一张表上# 1)合并orders和order_products on=order_id tab1:order_id, product_id, user_idtab1 = pd.merge(orders, order_products, on=["order_id", "order_id"])# 2)合并tab1和products on=product_id tab2:aisle_idtab2 = pd.merge(tab1, products, on=["product_id", "product_id"])# 3)合并tab2和aisles on=aisle_id tab3:user_id, aisletab3 = pd.merge(tab2, aisles, on=["aisle_id", "aisle_id"])# 3、交叉表处理,把user_id和aisle进行分组table = pd.crosstab(tab3["user_id"], tab3["aisle"])# 4、主成分分析的方法进行降维# 1)实例化一个转换器类PCAtransfer = PCA(n_components=0.95)# 2)fit_transformdata = transfer.fit_transform(table)print(data.shape)if __name__ == '__main__':data_demo()

结果:

相关文章:

[机器学习]特征工程:主成分分析

目录 主成分分析 1、简介 2、帮助理解 3、API调用 4、案例 本文介绍主成分分析的概述以及python如何实现算法,关于主成分分析算法数学原理讲解的文章,请看这一篇: 探究主成分分析方法数学原理_逐梦苍穹的博客-CSDN博客https://blog.csdn.…...

Python爬虫实战案例——第一例

X卢小说登录(包括验证码处理) 地址:aHR0cHM6Ly91LmZhbG9vLmNvbS9yZWdpc3QvbG9naW4uYXNweA 打开页面直接进行分析 任意输入用户名密码及验证码之后可以看到抓到的包中传输的数据明显需要的是txtPwd进行加密分析。按ctrlshiftf进行搜索。 定位来到源代码中断点进行调…...

一、openlayer开发介绍

首先需要引入openlayer api开发包。两种方式: 1、import方式,也就是npm安装,npm install ol 2、外部js引入。 下载地址:https://github.com/openlayers/openlayers 历史版本地址:Releases openlayers/openlayers …...

利用Jackson封装常用的JsonUtil工具类

在实际开发中,我们对于 JSON 数据的处理,通常有这么几个第三方工具包可以使用: gson:谷歌的fastjson:阿里巴巴的jackson:美国FasterXML公司的,Spring框架默认用的 由于以前一直用习惯了阿里的…...

阿里云2核4G服务器配置汇总表_轻量和ECS

阿里云2核4G服务器配置价格表,297元一年,配置为轻量应用服务器2核4G、4M带宽、60GB高效云盘,折合24元一个月。 目录 2核4G服务器轻量: 2核4G服务器ECS 关于轻量和ECS的区别: 2核4G服务器轻量: 云服务器…...

攻防世界-ics-06

原题解题思路 看着页面多,其实只有报表中心能够跳转,但是选了确定后没反应,应该不是注入,只有id会变化。 在burp中设置好负载进行爆破 有一个长度与众不同的包 打开发现flag。...

人工智能轨道交通行业周刊-第56期(2023.8.14-8.20)

本期关键词:数字化建设、巡检机器人、智慧城轨、福州地铁4号线、避雷器、LangChain 1 整理涉及公众号名单 1.1 行业类 RT轨道交通人民铁道世界轨道交通资讯网铁路信号技术交流北京铁路轨道交通网上榜铁路视点ITS World轨道交通联盟VSTR铁路与城市轨道交通RailMet…...

ruoyi-vue-pro yudao 项目报表设计器 积木报表模块启用及相关SQL脚本

目前ruoyi-vue-pro 项目虽然开源,但是report模块被屏蔽了,查看文档却要收费 199元(知识星球),价格有点太高了吧。 分享下如何启用 report 模块,顺便贴上sql相关脚本。 一、启用模块 修改根目录 pom.xml …...

【第三阶段】kotlin中使用带let的安全调用

let常常和?.配合使用,如果前面的对象为null,let不执行,能够执行到let里面 对象一定不为null 1.不为null fun main() {var name:String?"kotlin" //name是一个可空类型,发出广播,调用的地方必须补救措施var…...

JavaScript 快速入门手册

本篇文章学习: 菜鸟教程、尚硅谷。 JavaScript 快速入门手册 💯 前言: 本人目前算是一个Java程序员,但是目前环境… ε(ο`*))) 一言难尽啊,blog也好久好久没有更新了,一部分工作原因吧(外包真…...

FreeMarker系列--list的用法(长度,遍历,下标,嵌套,排序)

原文网址&#xff1a;FreeMarker系列--list的用法&#xff08;长度,遍历,下标,嵌套,排序&#xff09;_IT利刃出鞘的博客-CSDN博客 简介 本文介绍FreeMarker的list的用法。 大小 Java ArrayList<String> list new ArrayList<String>(); Freemaker ${list?s…...

【观察】戴尔科技:构建企业创新“韧性”,开辟数实融合新格局

过去几年&#xff0c;国家高度重视发展数字经济&#xff0c;将其上升为国家战略。其中&#xff0c;“十四五”规划中&#xff0c;就明确提出要推动数字经济和实体经济的深度融合&#xff0c;以数字经济赋能传统产业转型升级&#xff1b;而2023年年初正式发布的《数字中国建设整…...

数据管理平台

数据管理平台项目 文章目录 数据管理平台项目业务1-登录验证代码步骤&#xff1a; token 技术token的使用代码步骤 axios 请求拦截器语法代码示例 axios响应拦截器优化axios响应结果发布文章-富文本编辑器发布文章-频道列表发布文章-封面设置发布文章-收集并保存内容管理-文章列…...

手搓大语言模型 使用jieba分词制作词表,词表大小几十万 加强依赖性

jieba分词词表生成与训练 import numpy as np import paddle import pandas as pd from multiprocessing import Process, Manager, freeze_support from just_mask_em import JustMaskEm, HeadLoss from tqdm import tqdm from glob import glob import jieba import warning…...

【校招VIP】java语言类和对象之map、set集合

考点介绍&#xff1a; map、set集合相关内容是校招面试的高频考点之一。 map和set是一种专门用来进行搜索的容器或者数据结构&#xff0c;其搜索效率与其具体的实例化子类有关系。 『java语言类和对象之map、set集合』相关题目及解析内容可点击文章末尾链接查看&#xff01; …...

windows服务器下java程序健康检测及假死崩溃后自动重启应用、开机自动启动

前两天由于项目需要&#xff0c;一个windows上的批处理任务&#xff08;kitchen.bat&#xff09;&#xff0c;需要接到mq的消息通知后执行&#xff0c;为了快速实现这里我们通过springboot写了一个jar程序&#xff0c;用于接收mq的消息&#xff0c;并调用bat文件。 本程序需要实…...

七夕特辑(一)浪漫表白方式 用神经网络生成一首情诗

目录 一、准备工作二、用神经网络生成一首诗&#xff0c;代码说明 牛郎织女相会&#xff0c;七夕祝福要送来。祝福天下有情人&#xff0c;终成眷属永相伴。 七夕是中国传统的情人节&#xff0c;也是恋人们表达爱意的好时机。在这个特别的日子里&#xff0c;送上温馨的祝福&…...

springboot的 spring.redis.lettuce的max-active、max-idle、min-idle的搭配

在Spring Boot中&#xff0c;使用Lettuce作为Redis客户端是一种常见的选择。Lettuce是一个高性能、可扩展的异步Redis客户端。下面是关于application.yml配置文件中spring.redis.lettuce的一些配置&#xff1a; spring:redis:host: localhostport: 6379database: 0lettuce:poo…...

盒子模型样式

&#x1f353;盒子属性 属性名称中文注释备注border设置盒子的边框边框宽度 边框类型 边框颜色border-left设置左边框边框宽度 边框类型 边框颜色border-right设置右边框边框宽度 边框类型 边框颜色border-top设置上边框边框宽度 边框类型 边框颜色border-bottom设置下边框边框…...

动态规划入门之线性动态规划

P1115 最大子段和 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题目要求求连续得一段子串使其累加和最大。 我们做动态规划首先考虑小情况&#xff0c;然后推而广之。 假设三个数1&#xff0c;-2&#xff0c;5. 我们先选1然后我们在-2以及-2加1里边选&#xff0c;我们选…...

Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动

一、前言说明 在2011版本的gb28181协议中&#xff0c;拉取视频流只要求udp方式&#xff0c;从2016开始要求新增支持tcp被动和tcp主动两种方式&#xff0c;udp理论上会丢包的&#xff0c;所以实际使用过程可能会出现画面花屏的情况&#xff0c;而tcp肯定不丢包&#xff0c;起码…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用

文章目录 问题现象问题原因解决办法 问题现象 macOS启动台&#xff08;Launchpad&#xff09;多出来了&#xff1a;Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显&#xff0c;都是Google家的办公全家桶。这些应用并不是通过独立安装的…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

Caliper 负载(Workload)详细解析

Caliper 负载(Workload)详细解析 负载(Workload)是 Caliper 性能测试的核心部分,它定义了测试期间要执行的具体合约调用行为和交易模式。下面我将全面深入地讲解负载的各个方面。 一、负载模块基本结构 一个典型的负载模块(如 workload.js)包含以下基本结构: use strict;/…...