当前位置: 首页 > news >正文

【算法】二分查找(整数二分和浮点数二分)

二分查找也称折半查找(Binary Search),是一种效率较高的查找方法,时间复杂度O(logN)

二分查找采用了“分治”策略。使用二分查找时,数组中的元素之间得有单调性升序或者降序)。

二分的模板据我目前所知有三个,但是下面是我个人认为最好的一种(比较简单,不容易写错~)

1. 整数二分

整数二分过程:

 普遍规律:

 我们发现:

2. 整数二分模板

查找最后一个<=x的数的下标:

int find(int x)
{int l = 0, r = n + 1; //开区间while (l + 1 < r)  //l+1==r时结束{int mid = (l + r) >> 1;  //相当于mid=(l+r)/2;if (a[mid] <= x) l = mid;else r = mid;}return l;
}

查找第一个>=x的数的下标:

int find(int x)
{int l = 0, r = n + 1; //开区间while (l + 1 < r)  //l+1==r时结束{int mid = (l + r) >> 1;  //相当于mid=(l+r)/2;if (a[mid] >= x) r = mid;else l = mid;}return r;
}

3. 整数二分模板题

3.1 洛谷P2249 【深基13.例1】查找

原题链接:https://www.luogu.com.cn/problem/P2249

#define _CRT_SECURE_NO_WARNINGS 1
#include<bits/stdc++.h>
using namespace std;
const int N = 1e6 + 10;
int a[N], n, m;
int find(int x)
{int l = 0, r = n + 1;while (l + 1 < r){int mid = (l + r) >> 1;if (a[mid] >= x) r = mid;else l = mid;}if (a[r] == x) return r;else return -1;
}
int main()
{scanf("%d%d", &n, &m);for (int i = 1; i <= n; i++) scanf("%d", &a[i]);while (m--){int k;scanf("%d", &k);printf("%d ", find(k));}return 0;
}

 3.2 Acwing789. 数的范围

原题链接:https://www.acwing.com/problem/content/791/

#include<bits/stdc++.h>
using namespace std;
const int N=1e5+10;
int a[N],n,q;
int find1(int x)
{int l=-1,r=n;while(l+1<r){int mid=(l+r)>>1;if(a[mid]>=x) r=mid;else l=mid;}if(a[r]==x) return r;else return -1;
}
int find2(int x)
{int l=-1,r=n;while(l+1<r){int mid=(l+r)>>1;if(a[mid]<=x) l=mid;else r=mid;}if(a[l]==x) return l;else return -1;
}
int main()
{scanf("%d%d",&n,&q);for(int i=0;i<n;i++) scanf("%d",&a[i]);while(q--){int k;scanf("%d",&k);printf("%d %d\n",find1(k),find2(k));}
}

4. 浮点数二分

我们看下图:

分析:

(其实是个二分答案的题目)

y=x^3,我们知道这是个单调递增的函数。

-10000开三次方根大概是-27,10000开三次方根大概是27。

因为-10000<=y<=10000,我们为了方便,把左边界设置成-100,右边界设置成100。

 我们可以直观看到-27~27包含在-100~100。所以这样设置左右边界是没有问题滴。

我们不断二分缩小范围,当l和r非常接近时r-l<=1e-8),我们就认为找到了这个三次方根。

否则我们用while(r-l>=1e-8)继续循环遍历。

又因为是递增的,所以mid*mid*mid<=y,我们让区间往右靠l=mid);反之,当mid*mid*mid>y时,我们让区间往左靠r=mid)。

最后返回左边界l即可

 

5. 浮点数二分模板

double find(double y)
{double l = -100, r = 100;while (r - l > 1e-8){double mid = (l + r) / 2;if (mid * mid * mid <= y) l = mid;else r = mid;}return l;
}

6. 浮点数二分模板题

6.1 Acwing 790.数的三次方根

原题链接:https://www.acwing.com/problem/content/792/

 

#include<bits/stdc++.h>
using namespace std;
double n;
int main()
{scanf("%lf", &n);double l = -100, r = 100;while (r - l > 1e-8){double mid = (l + r) / 2;if (mid * mid * mid <= n) l = mid;else r = mid;}printf("%.6lf\n", r);return 0;
}

 

相关文章:

【算法】二分查找(整数二分和浮点数二分)

二分查找也称折半查找&#xff08;Binary Search&#xff09;&#xff0c;是一种效率较高的查找方法&#xff0c;时间复杂度为O(logN)。 二分查找采用了“分治”策略。使用二分查找时&#xff0c;数组中的元素之间得有单调性&#xff08;升序或者降序&#xff09;。 二分的模…...

git压缩/合并多次commit提交为1次commit提交

git压缩/合并N次commit提交为1次commit提交 假设有最近3次提交&#xff1a; commit_id1 commit_id2 commit_id3目标是把以上3次commit合并成1个commit&#xff0c;注意&#xff0c;最新的commit提交在最上面。 在git bash里面的操作步骤&#xff1a; &#xff08;1&#xff0…...

【3519DV500】AI算法承载硬件平台_2.5T算力+AI ISP图像处理_超感光视频硬件方案开发

Hi3519DV500 内置双核 A55 &#xff0c;提供高效、丰富和灵活的CPU 资源&#xff0c;以满足客户计算和控制需求。 Hi3519DV500集成了高效的神经网络推理引擎&#xff0c;最高2.5Tops NN算力&#xff0c;支持业界主流的神经 网络框架。神经网络支持完整的 API 和工具链&#xf…...

Linux系统基础服务启动的方法

服务&#xff0c;其实就是运行在操作系统后台的一个或者多个应用程序&#xff0c;为计算机系统或用户提供某项特定的服务。Linux系统运行的绝大多数服务都是需要安装才有的&#xff0c;例如FTP服务、httpd服务、MySQL、redis、Zookeeper、rabbitmq、vsftpd等等&#xff0c;那么…...

STM32 FLASH 读写数据

1. 《STM32 中文参考手册》&#xff0c;需要查看芯片数据手册&#xff0c;代码起始地址一般都是0x8000 0000&#xff0c;这是存放整个项目代码的起始地址 2. 编译信息查看代码大小&#xff0c;修改代码后第一次编译后会有这个提示信息 2.1 修改代码后编译&#xff0c;会有提示…...

excel功能区(ribbonx)编程笔记--1 初识功能区

再office2003版本以前,excel是具有菜单栏和工具栏的,再office2007及以后的版本中,界面中没有菜单栏和工具栏,使用功能区替换了菜单和工具栏。 您可能意识到自定义用户界面也变得更加困难,其实设置功能区并不会像您想像的那样困难,因为Microsoft也意识到必须有一种方式供开…...

电脑远程接入软件可以进行文件传输吗?快解析内网穿透

电脑远程接入软件的出现&#xff0c;让我们可以在两台电脑之间进行交互和操作。但是&#xff0c;很多人对于这些软件能否进行文件传输还存在一些疑问。下面的文章将解答这个问题。 1.电脑远程接入软件可以进行文件传输。传统上&#xff0c;我们可能会通过传输线或者移动存储设…...

react-native-webview使用postMessage后H5不能监听问题(iOS和安卓的兼容问题)

/* 监听rn消息 */ const eventListener nativeEvent > {//解析数据actionType、extraconst {actionType, extra} nativeEvent.data && JSON.parse(nativeEvent.data) || {} } //安卓用document&#xff0c;ios用window window.addEventListener(message, eventLis…...

通过LD_PRELOAD绕过disable_functions

LD_PRELOAD LD_PRELOAD是Linux/Unix系统的一个环境变量&#xff0c;它可以影响程序的运行时的链接&#xff0c;它允许在程序运行前定义优先加载的动态链接库。通过这个环境变量&#xff0c;可以在主程序和其动态链接库的中间加载别的动态链接库&#xff0c;甚至覆盖系统的函数…...

Python批量爬虫下载文件——把Excel中的超链接快速变成网址

本文的背景是&#xff1a;大学关系很好的老师问我能不能把Excel中1000个超链接网址对应的pdf文档下载下来。虽然可以手动一个一个点击下载&#xff0c;但是这样太费人力和时间了。我想起了之前的爬虫经验&#xff0c;给老师分析了一下可行性&#xff0c;就动手实践了。    没…...

Crimson:高性能,高扩展的新一代 Ceph OSD

背景 随着物理硬件的不断发展&#xff0c;存储软件所使用的硬件的情况也一直在不断变化。 一方面&#xff0c;内存和 IO 技术一直在快速发展&#xff0c;硬件的性能在极速增加。在最初设计 Ceph 的时候&#xff0c;通常情况下&#xff0c;Ceph 都是被部署到机械硬盘上&#x…...

【websocket】websocket-client 与 websockets

websocket-client websocket-client 是 websocket 客户端&#xff0c;提供了对ws低级API的访问。通过导入 websocket 库使用&#xff0c;websocket 库是基于事件驱动的设计模式&#xff0c;通过定义回调函数来处理接收到的消息、错误和连接关闭等事件。 优势&#xff1a; 兼容…...

Qt快速学习(一)--对象,信号和槽

目录 1.Qt概述 1.1 什么是Qt 2.2 手动创建 2.3 pro文件 2.4 一个最简单的Qt应用程序 3 第一个Qt小程序 3.1 按钮的创建 3.2 对象模型&#xff08;对象树&#xff09; 3.3 Qt窗口坐标体系 4 信号和槽机制 4.1 系统自带的信号和槽 4.2 自定义信号和槽 4.3信号槽的拓展 4…...

Qt6之如何为QDialog添加最大化和最小化按钮

在QDialog构造函数中添加以下几行代码&#xff1a; // 设置窗体最大化和最小化Qt::WindowFlags windowFlag Qt::Dialog;windowFlag | Qt::WindowMinimizeButtonHint;windowFlag | Qt::WindowMaximizeButtonHint;windowFlag …...

攻防世界-warmup

原题解题思路 只有一张图片&#xff0c;就查看源代码&#xff0c;有一个source.php。 查看source.php&#xff0c;白名单中还有一个hint.php。 hint.php告诉我们flag的位置ffffllllaaaagggg 但是直接跳转是没用的&#xff0c;构造payload。 http://61.147.171.105:55725/sourc…...

02__models

LangChain提供两种封装的模型接口 1.大规模语言模型&#xff08;LLM&#xff09;&#xff1a;输入文本字符串&#xff0c;返回文本字符串 2.聊天模型&#xff1a;基于一个语言模型&#xff0c;输入聊天消息列表&#xff0c;返回聊天消息 Langchain的支持OpenAI、ChatGLM、Hu…...

MyBatis入门配置及CURD实现

目录 一、MyBatis简介 1. 什么是 MyBatis ? 2. MyBatis的特性 3. 什么是持久层框架&#xff1f; 二、MyBatis环境配置 2.1 创建maven工程 2.2 导入相关pom依赖 2.3 导入jdbc配置文件 2.4 Mybatis相关插件安装 3.5 Mybatis-cfg.xml 核心配置 2.6 引入Log4j2日志文件…...

《游戏编程模式》学习笔记(五)原型模式 Prototype Pattern

原型的定义 用原型实例指定创建对象的种类&#xff0c;并且通过拷贝这些原型创建新的对象。 举个例子 假设我现在要做一款游戏&#xff0c;这个游戏里有许多不同种类的怪物&#xff0c;鬼魂&#xff0c;恶魔和巫师。这些怪物通过“生产者”进入这片区域&#xff0c;每种敌人…...

ansible案列之LNMP分布式剧本

LNMP分布式剧本 一&#xff1a;环境设置二&#xff1a;编写Nginx剧本准备nginx下载源准备配置文件并开放PHP的访问路径准备php测试页面编写nginx剧本 三&#xff1a;编写Mysql剧本编写密码获取脚本准备Mysql的yum源编写mysql剧本 四&#xff1a;准备PHP剧本准备两个配置文件编写…...

React2023电商项目实战 - 1.项目搭建

古人学问无遗力&#xff0c;少壮工夫老始成。 纸上得来终觉浅&#xff0c;绝知此事要躬行。 —— 陆游《《冬夜读书示子聿》》 系列文章目录 项目搭建App登录及网关App文章自媒体平台&#xff08;博主后台&#xff09;内容审核(自动) 文章目录 系列文章目录一、项目介绍1.页面…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

UDP(Echoserver)

网络命令 Ping 命令 检测网络是否连通 使用方法: ping -c 次数 网址ping -c 3 www.baidu.comnetstat 命令 netstat 是一个用来查看网络状态的重要工具. 语法&#xff1a;netstat [选项] 功能&#xff1a;查看网络状态 常用选项&#xff1a; n 拒绝显示别名&#…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

【git】把本地更改提交远程新分支feature_g

创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

Java编程之桥接模式

定义 桥接模式&#xff08;Bridge Pattern&#xff09;属于结构型设计模式&#xff0c;它的核心意图是将抽象部分与实现部分分离&#xff0c;使它们可以独立地变化。这种模式通过组合关系来替代继承关系&#xff0c;从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...