当前位置: 首页 > news >正文

机器学习——随机森林【手动代码】

随机森林这个内容,是目前来说。。。最最最简单,最好理解,应该也是最好实现的了!!!

先挖坑,慢慢填

随机森林,这个名字取得,果然深得该算法的核心精髓,既随机,又森林!
哇哦,以后如果要给阿猫阿狗取名,或是生个小孩儿取名,也最好是能参考随机森林的精髓

从名字来拆解随机森林的算法精髓。

首先是随机,随机地抽样+随机地选特征

其次是森林,为什么是森林呢?

妙了,因为算法的基本单元是一颗决策树

随机森林,其实就是由多个决策树进行预测分类,每棵决策树都有一个预测分类结果,那么采取少数服从多数的原则,

也就是,如果有A\B\C三个类别,绝大多数决策预测是A类,少部分决策树预测是B\C类,则最终判定为A类

之前已经做过决策树的设计,现在只需在决策树的基础上,进行些微的代码修改

首先,决策树作为一个类,生成每个决策树,就生成一个对象

每个决策树对象,都有各自随机抽取的数据量(样本)、预测结果

循环一定次数:建立多少棵树,就循环多少次随机获取一定数量的特征属性随机获取一定数量的样本数据创建一个决策树对象构建该对象的决策树应用该决策树对象,预测整个数据集分类结果
汇总所有决策树对象的预测结果,投票表决
import math
import numpy as np
import pandas as pd
import random
# 获取所需数据
datas = pd.read_excel('./datas1.xlsx')
important_features = ['推荐类型','推荐分值', '回复速度']
datas_1 = datas[important_features]
Y = datas_1['推荐类型']
X = datas_1.drop('推荐类型',axis=1)
Y_feature = "推荐类型"# 构建一个树节点
class Node_1():def __init__(self,value):self.value = valueself.select_feat = Noneself.sons = {}
# 根据节点,构建一个树
class Tree():def __init__(self,datas_arg):self.root = Noneself.datas = datas_argself.Y_predict = []self.X = datas_arg.drop('推荐类型', axis=1)def get_value_1(self,datas_arg,node_arg=None):# 明确当前节点数据node = node_argif self.root == None:node = Node_1(datas_arg)self.root = node# 明确当前节点的划分特征、子节点们: 计算各特征划分后的信息增益,并选出信息增益最大的特征gain_dicts = {}for i in self.X.columns:groups = datas_arg.groupby(i)groups = [groups.get_group(j) for j in set(datas_arg[i])]if len(groups) > 1:  # 特征可分gain_dicts[i] = self.get_gain(datas_arg,groups,Y_feature)# 明确停止划分的条件,即停止迭代的条件:无可划分的属性,或是最大的条件熵为0if (not gain_dicts) or max(gain_dicts.values()) == 0:returnselect_feat = max(gain_dicts,key=lambda x:gain_dicts[x])node.select_feat = select_featgroup_feat = datas_arg.groupby(select_feat)for j in set(datas_arg[select_feat]):node_son_value = group_feat.get_group(j)node_son = Node_1(node_son_value)node.sons[j] = node_sonfor key,node_single in node.sons.items():self.get_value_1(node_single.value,node_single)# 获取熵def get_ent(self,datas,feature):p_values = datas[feature].value_counts(normalize=True)p_updown = 1/p_valuesent = (p_values*(p_updown).apply(np.log2)).sum()return ent# 获取条件熵def get_condition_ent(self,datas_list,feature):proportions = [len(i) for i in datas_list]proportions = [i/sum(proportions) for i in proportions]ents = [self.get_ent(i,feature) for i in datas_list]condition_ent = np.multiply(ents,proportions).sum()return condition_ent# 获取信息增益def get_gain(self,datas_all,datas_group,feature):condition_ent = self.get_condition_ent(datas_group,feature)ent_all = self.get_ent(datas_all,feature)gain = ent_all - condition_entreturn gain# 探访决策树,并进行预测分类def predict(self,data,root):if not root.select_feat:p_values = root.value[Y_feature].value_counts(normalize=True)self.Y_predict.append(p_values.idxmax())returnfeat = root.select_feattry:if data[feat] not in root.sons.keys():self.Y_predict.append(None)returnnext_node = root.sons[data[feat]]except:print(data)print(root.sons)raise Exception("错了")self.predict(data,next_node)def pre_print(self, root):if root is None:returnfor key,node_son in root.sons.items():self.pre_print(node_son)def func(self,data):self.predict(data,self.root)max_tree_num = 10
max_feat_num = 3
max_data_num = 100
Y_feature = "推荐类型"data_index_list = [i for i in range(0,len(datas_1)-1)]
feat_index_list = [i for i in range(0,len(important_features)-1)]tree_list = []
all_Y_predict = []
# 循环一定次数:建立多少棵树,就循环多少次# 随机获取一定数量的特征属性# 随机获取一定数量的样本数据
for i in range(max_tree_num):data_index = random.sample(data_index_list, max_data_num-1)feat_index = random.sample(feat_index_list, max_feat_num-1)temp_feat = [important_features[index] for index in feat_index]temp1 = datas[temp_feat]temp_datas = pd.DataFrame([temp1.iloc[index] for index in data_index])# 创建一棵树tree = Tree(temp_datas)# breaktree.get_value_1(tree.datas)datas_1.apply(tree.func,axis=1)all_Y_predict.append(tree.Y_predict)
all_Y_predict = pd.DataFrame(all_Y_predict)
result = all_Y_predict.apply(pd.Series.value_counts)
Y_predict = result.idxmax()   # 打印列最大值的行索引accurency = sum(Y_predict==Y)/len(Y)
print(f"分类准确率:{accurency*100}%")

相关文章:

机器学习——随机森林【手动代码】

随机森林这个内容,是目前来说。。。最最最简单,最好理解,应该也是最好实现的了!!! 先挖坑,慢慢填 随机森林,这个名字取得,果然深得该算法的核心精髓,既随机&a…...

Vue 2 处理边界情况

访问元素和组件 通过Vue 2 组件基础一文的学习,我们知道组件之间可以通过传递props或事件来进行通信。 但在一些情况下,我们使用下面的方法将更有用。 1.访问根实例 根实例可通过this.$root获取。 我们在所有子组件中都可以像上面那样访问根实例&…...

写一个mysql 正则表达式,每三个img标签图片后面添加<hr>

你可以使用MySQL的REGEXP_REPLACE函数来实现这个需求。下面是一个示例的正则表达式和SQL语句&#xff1a; sql UPDATE your_table SET your_column REGEXP_REPLACE(your_column, (<img[^>]*>){3}, $0<hr>) WHERE your_column REGEXP (<img[^>]*>){3}…...

Spring MVC异常处理

Spring MVC异常处理 Spring MVC异常处理机制HandlerExceptionResolver的实现类DefaultHandlerExceptionResolver实现类DefaultHandlerExceptionResolver 在Controller的请求处理方法中手动使用try…catch块捕捉异常&#xff0c;当捕捉到指定的异常时&#xff0c;系统返回对应的…...

Centos7安装docker后默认开启docker0的网卡|卸载默认网卡

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…...

04_Redis与mysql数据双写一致性案例

04——redis与mysql数据双写一致性 一、canal 是什么 canal[ka’nel,中文翻译为水道/管道/沟渠/运河&#xff0c;主要用途是用于MySQL数据库增量日志数据的订阅、消费和解析&#xff0c;是阿里巴巴开发并开源的,采用Java语言开发&#xff1b; 历史背景是早期阿里巴巴因为杭州和…...

vue的开发者工具下载『保姆级别』

1.先进官网 极简插件_Chrome扩展插件商店_优质crx应用下载 (zzzmh.cn) 2.搜索vue devtools&#xff0c;点击进去 3.下载插件 4.下载到文件下你自己的文件下&#xff1a;我的是下载到E盘下。 5.压缩到当前目录下 6.电脑进入拓展程序&#xff08;不同的浏览器操作不同&#xff…...

vue的scrollTop手机环境设置值失效,本地正常可以赋值

获取div盒子ref或者document获取都行 监听方法 一定要加this.$nexttick,在本地测试只用nexttick是没有问题的&#xff0c;但是到手机测试就不行了&#xff0c;原因是因为手机渲染比本地更快&#xff0c;所以结合setTimeout使用 如果有更好的处理方法&#xff0c;恳请大佬指点一…...

[前端系列第7弹]Vue:一个渐进式的 JavaScript 框架

Vue 是一个用于构建用户界面的 JavaScript 框架&#xff0c;它具有以下特点&#xff1a; 渐进式&#xff1a;Vue 可以根据不同的使用场景&#xff0c;灵活地选择使用库或者框架的方式&#xff0c;从而实现渐进式的开发。响应式&#xff1a;Vue 通过数据绑定和虚拟 DOM 技术&am…...

C#键盘按键对应Keys类大全

...

SpringBoot 学习(03): 弱语言的注解和SpringBoot注解的异同

弱语言代表&#xff1a;Hyperf&#xff0c;一个基于 PHP Swoole 扩展的常驻内存框架 注解概念的举例说明&#xff1b; 说白了就是&#xff0c;你当领导&#xff0c;破烂事让秘书帮你去安排&#xff0c;你只需要批注一下&#xff0c;例如下周要举办一场活动&#xff0c;秘书将方…...

CloudQuery:更好地管理你的 OceanBase 数据库

前言&#xff1a;作为 OceanBase 的生态合作伙伴&#xff0c;CloudQuery&#xff08;简称“CQ”&#xff09; 最新发布的社区版 2.2.0 新增了 OceanBase 数据库&#xff0c;为企业使用 OceanBase 数据库提供全面的支持。包括连接与认证、查询与分析、数据安全与权限管理&#x…...

php的password_verify 和 password_hash密码验证

password_hash() 使用足够强度的单向散列算法创建密码的散列(hash)。 当前支持的算法&#xff1a; PASSWORD_DEFAULT - 使用 bcrypt 算法 (PHP 5.5.0 默认)。 注意&#xff0c;该常量会随着 PHP 加入更新更高强度的算法而改变。 所以&#xff0c;使用此常量生成结果的长度将在未…...

JAVA免杀学习与实验

1 认识Webshell 创建一个JSP文件&#xff1a; <% page import"java.io.InputStream" %> <% page import"java.io.BufferedReader" %> <% page import"java.io.InputStreamReader" %> <% page language"java" p…...

Apche Kafka + Spring的消息监听容器

目录 一、消息的接收1.1、消息监听器 二、消息监听容器2.1、 实现方法2.1.1、KafkaMessageListenerContainer2.1.1.1、 基本概念2.1.1.2、如何使用 KafkaMessageListenerContainer 2.1.2、ConcurrentMessageListenerContainer 三、偏移 四、监听器容器自动启动 一、消息的接收 …...

[JavaWeb]【五】web后端开发-Tomcat SpringBoot解析

目录 一 介绍Tomcat 二 基本使用 2.1 解压绿色版 2.2 启动TOMCAT 2.3 关闭TOMCAT 2.4 常见问题 2.5 修改端口号 2.6 部署应用程序 三 SpringBootWeb入门程序解析 前言&#xff1a;tomcat与SpringBoot解析 一 介绍Tomcat 二 基本使用 2.1 解压绿色版 2.2 启动TOMCAT 2…...

css 用过渡实现,鼠标离开li时,背景色缓慢消息的样式

要实现鼠标悬停时背景颜色变为黄色&#xff0c;鼠标离开时背景颜色慢慢消失并变回白色的效果&#xff0c; 可以使用CSS的过渡&#xff08;transition&#xff09;属性 li {background: #fff;color: #000;transition: background 0.5s ease-out; }li:hover {background: #fbb31…...

pytorch 线性层Linear详解

线性层就是全连接层&#xff0c;以一个输入特征数为2&#xff0c;输出特征数为3的线性层为例&#xff0c;其网络结构如下图所示&#xff1a; 输入输出数据的关系如下&#xff1a; 写成矩阵的形式就是&#xff1a; 下面通过代码进行验证&#xff1a; import torch.nn as nn …...

LeetCode 833. 字符串中的查找与替换

2235. 两整数相加 添加链接描述 给你两个整数 num1 和 num2&#xff0c;返回这两个整数的和。 示例 1&#xff1a; 输入&#xff1a;num1 12, num2 5 输出&#xff1a;17 解释&#xff1a;num1 是 12&#xff0c;num2 是 5 &#xff0c;它们的和是 12 5 17 &#xff0c;…...

Oracle故障案例之-19C时区补丁DSTV38更新

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&#x1f61…...

【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型

摘要 拍照搜题系统采用“三层管道&#xff08;多模态 OCR → 语义检索 → 答案渲染&#xff09;、两级检索&#xff08;倒排 BM25 向量 HNSW&#xff09;并以大语言模型兜底”的整体框架&#xff1a; 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后&#xff0c;分别用…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。

1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj&#xff0c;再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

comfyui 工作流中 图生视频 如何增加视频的长度到5秒

comfyUI 工作流怎么可以生成更长的视频。除了硬件显存要求之外还有别的方法吗&#xff1f; 在ComfyUI中实现图生视频并延长到5秒&#xff0c;需要结合多个扩展和技巧。以下是完整解决方案&#xff1a; 核心工作流配置&#xff08;24fps下5秒120帧&#xff09; #mermaid-svg-yP…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

验证redis数据结构

一、功能验证 1.验证redis的数据结构&#xff08;如字符串、列表、哈希、集合、有序集合等&#xff09;是否按照预期工作。 2、常见的数据结构验证方法&#xff1a; ①字符串&#xff08;string&#xff09; 测试基本操作 set、get、incr、decr 验证字符串的长度和内容是否正…...