【Opencv--自适应图像二值化】cv2.adaptiveThreshold()
【Opencv–adaptiveThreshold】自适应阈值图像二值化
文章目录
- 【Opencv--adaptiveThreshold】自适应阈值图像二值化
- 1. 介绍
- 2. adaptiveThreshold函数
- 2.1 函数调用
- 2.2 补充说明
- 3. 代码示例
- 4. 效果
- 4.1 原图(ori.img)
- 4.2 处理后
- 5. 参考
1. 介绍
在这里 cv2.threshold函数 介绍了普通的opencv图像阈值处理函数。但threshold 的图像阈值处理对于某些光照不均的图像,这种全局阈值分割的方法并不能得到好的效果。
图像阈值化操作中,我们更关心的是从二值化图像中分离目标区域和背景区域,仅仅通过固定阈值很难达到理想的分割效果。在图片中的灰度是不均匀的,所以通常情况下图片中不同区域的阈值是不一样的。这样就需要一种方法根据图像不同区域亮度或灰度分布,计算其局部阈值来进行阈值处理。这种方法就是自适应阈值化图像处理,实际上这可以称为局部阈值法,在OpenCV中adaptiveThreshold就是这种方法。
2. adaptiveThreshold函数
2.1 函数调用
import cv2
dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)
-
参数说明:
- src:源图像,8位的灰度图。
- maxValue:用于指定满足条件的像素设定的灰度值
- adaptiveMethod:使用的自适应阈值算法,有2种类型ADAPTIVE_THRESH_MEAN_C算法(局部邻域块均值)或ADAPTIVE_THRESH_GAUSSIAN_C(局部邻域块高斯加权和)。
- ADAPTIVE_THRESH_MEAN_C的计算方法是计算出邻域的平均值再减去第六个参数C的值;
- ADAPTIVE_THRESH_GAUSSIAN_C的计算方法是计算出邻域的高斯均匀值再减去第六个参数C的值。
- 处理边界时使用BORDER_REPLICATE | BORDER_ISOLATED模式。
- thresholdType:阈值类型,只能是THRESH_BINARY或THRESH_BINARY_INV二者之一,具体参考上面“图像阈值处理”的表格
- blockSize:表示邻域块大小,用来计算区域阈值,一般选择3、5、7……
- C:表示常数,它是一个从均匀或加权均值提取的常数,通常为正数,但也可以是负数或零
-
返回值:
- dst:处理后的图像
2.2 补充说明
- 亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小。
- 在灰度图像中,灰度值变化明显的区域往往是物体的轮廓,所以将图像分成一小块一小块的去计算阈值往往会得出图像的轮廓。因此函数adaptiveThreshold除了将灰度图像二值化,也可以进行边缘提取。
- 之所以能进行边缘提取,是因为当block很小时,如block_size=3 or 5 or 7时,“自适应”的程度很高,即容易出现block里面的像素值都差不多,这样便无法二值化,而只能在边缘等梯度大的地方实现二值化,结果显得它是边缘提取函数。
- 当把blockSize设为比较大的值时,如blockSize=21 or 31 or 41时,adaptiveThreshold便是二值化函数
- blockSize必须为大于1的奇数(这里解释一下,size为偶数的话,该block的中心点就不确定了,因此为奇数。)
- 如果使用平均值方法,平均值mean为180,差值delta为10,maxValue设为255。那么灰度小于170的像素为0,大于等于170的像素为255,如果是反向二值化,灰度小于170的像素为255,大于等于170的像素为0。
3. 代码示例
import cv2img = cv2.imread('ori.jpg', 0)img1 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 3, 5)
cv2.imwrite("new1.jpg", img1)img2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 5)
cv2.imwrite("new1.jpg", img2)
4. 效果
4.1 原图(ori.img)

4.2 处理后
- new1.img

- new2.jpg

可以看到,
- 当blockSize小时,轮廓识别效果明显,突出边缘区域。
- 而blockSize大时,就是一个二值化图像。
5. 参考
【1】https://blog.csdn.net/LaoYuanPython/article/details/108558834
相关文章:
【Opencv--自适应图像二值化】cv2.adaptiveThreshold()
【Opencv–adaptiveThreshold】自适应阈值图像二值化 文章目录【Opencv--adaptiveThreshold】自适应阈值图像二值化1. 介绍2. adaptiveThreshold函数2.1 函数调用2.2 补充说明3. 代码示例4. 效果4.1 原图(ori.img)4.2 处理后5. 参考1. 介绍 在这里 cv2.…...
洛谷P8601[蓝桥杯][2013年第四届真题]剪格子
题目描述如图 11 所示,33 的格子中填写了一些整数。我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是 60。本题的要求就是请你编程判定:对给定的 mn 的格子中的整数,是否可以分割为两个部分,使…...
配置alias实现快速生成.gitignore文件
git工具:版本控制开发工具。 cscope工具:用于浏览C源码的工具,类似于ctags。在代码根目录下执行cscope -Rbq,然后产生三个索引文件(cscope.out、cscope.in.out和cscope.po.out三个文件)。 在Linux下使用vi…...
MySQL数据库调优————GROUP BY及DISTINCT优化
GROUP BY 三种处理GROUP BY的方式 松散索引扫描(Loose Index Scan)紧凑索引扫描(Tight Index Scan)临时表(Temporary table) 三种方式的性能一次递减 松散索引扫描 无需扫描满足条件的所有索引键即可返…...
LRU缓存算法
双向链表哈希表(非线程安全) https://leetcode.cn/problems/lru-cache/solutions/259678/lruhuan-cun-ji-zhi-by-leetcode-solution/ /*** LRU算法: 哈希表双向链表实现* 1. 双向链表按照被使用的顺序来存储, 靠近头部的节点是最近使用的, 靠近尾部的节…...
@Configuration注解
Configuration注解介绍 Configuration注解,用于标注一个类是一个spring的配置类(同时,也是一个bean),配置类中可以使用ComponentScan、Import、ImportResource 和 Bean等注解的方式定义beanDefinition。 Target(Elem…...
基于springboot+vue的食疗系统
基于springbootvue的食疗系统 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍&…...
sklearn学习-朴素贝叶斯
文章目录一、概述1、真正的概率分类器2、sklearn中的朴素贝叶斯二、不同分布下的贝叶斯1、高斯朴素贝叶斯GaussianNB2、探索贝叶斯:高斯朴素贝叶斯擅长的数据集3、探索贝叶斯:高斯朴素贝叶斯的拟合效果与运算速度总结一、概述 1、真正的概率分类器 算法…...
分享112个HTML艺术时尚模板,总有一款适合您
分享112个HTML艺术时尚模板,总有一款适合您 112个HTML艺术时尚模板下载链接:https://pan.baidu.com/s/1D3-mfPOud-f3vy9yLl-bmw?pwdfph2 提取码:fph2 Python采集代码下载链接:采集代码.zip - 蓝奏云 时尚平面模特网站模板 潮…...
用GDB远程调试运行于QEMU的程序
1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. 测试环境 本文使用 Ubuntu 16.04.4 LTS QEMU 环境进行调试。 3. 用 GDB 调试 QEMU 内程序 3.1 编写用来调试的程序 我们用 ARM32 来进行调试…...
20 堆排序
文章目录1 堆排序的概念2 堆排序基本思想3 堆排序步骤图解说明4 堆排序的代码实现1 堆排序的概念 1) 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为 O(nlogn)…...
2023最新文件快递柜系统网站源码 | 匿名口令分享 | 临时文件分享
内容目录一、详细介绍二、效果展示1.部分代码2.效果图展示三、学习资料下载一、详细介绍 2023最新文件快递柜系统网站源码 | 匿名口令分享 | 临时文件分享 很多时候,我们都想将一些文件或文本传送给别人,或者跨端传递一些信息,但是我们又不…...
分片策略(二)
分片策略 基本概念 分片键 用于分片的字段,是将数据库或表拆分的字段,比如,我可以使用user_id作为分片键将用户数据分到不同的表中,这里的user_id就是分片键,除了这种单字段分片,ShardingSphere还支持多…...
Qt之调色板类QPalette的使用
文章目录QPalette调色板类前言代码知识点讲解QPalette调色板类 前言 Qt提供的调色板类QPalette专门用于管理部件的外观显示,相当于部件或对话框的调色板,管理他们所有的颜色信息。每个部件都包含一个QPalette对象,在显示时,按照…...
Kotlin 32. Kotlin 多语言支持
Kotlin 多语言支持 对于 Kotlin 来说,当我们新建一个项目时,会默认在 values/ 文件夹下,生成一个 strings.xml 文件。比如说, <resources><string name"app_name">exampleNewProject</string> <…...
【Flutter入门到进阶】Dart进阶篇---DartVM单线程设计原理
1 虚拟机的指令执行设计 1.1 虚拟机的分类 基于栈的虚拟机,比如JVM虚拟机 基于寄存器的虚拟机,比如Dalvik虚拟机 1.2 虚拟机的概念 首先问一个基本的问题,作为一个虚拟机,它最基本的要实现哪些功能? 他应该能够模拟…...
Dem和NvM(NVRAM Manager)的交集
NVRAM(NvM)提供了在NVRAM中存储数据Block的机制。 NVRAM Block(最大大小取决于配置)被分配给Dem,并由Dem实现事件状态信息和相关数据的永久存储(例如通电复位)。 ECU 状态管理器(Ec…...
AI神经网络CNN/RNN/DNN/SNN的区别对比
@版权声明: 本文由 ChatGpt 创作; BiliBili: https://www.bilibili.com/video/BV17D4y1P7pM/?share_source=copy_web&vd_source=6d217e0ff6387a749dc570aba51d36fd 引言 随着人工智能技术的发展,神经网络作为人工智能的核心技术之一,被广泛应用于图像识别、语音识别、…...
【JavaWeb】一文学会JPA
✅✅作者主页:🔗孙不坚1208的博客 🔥🔥精选专栏:🔗JavaWeb从入门到精通(持续更新中) 📋📋 本文摘要:本篇文章主要介绍JPA的概念、注解实现ORM规范…...
【安卓逆向】APK修改与反编译回编译
【安卓逆向】反编译修改APK回编译使用工具流程步骤Apktool相关安装与使用常用命令备查APK签名命令备查实战练习反编译查看修改的地方使用Apktool反编译得到产物文件夹并进行修改回编APK实用场景在日常开发我们可能需要替换某些资源或者修改某些代码,但是我们没有源码…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
linux 下常用变更-8
1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行,YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID: YW3…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
