当前位置: 首页 > news >正文

【Opencv--自适应图像二值化】cv2.adaptiveThreshold()

【Opencv–adaptiveThreshold】自适应阈值图像二值化

文章目录

  • 【Opencv--adaptiveThreshold】自适应阈值图像二值化
    • 1. 介绍
    • 2. adaptiveThreshold函数
      • 2.1 函数调用
      • 2.2 补充说明
    • 3. 代码示例
    • 4. 效果
      • 4.1 原图(ori.img)
      • 4.2 处理后
    • 5. 参考

1. 介绍

在这里 cv2.threshold函数 介绍了普通的opencv图像阈值处理函数。但threshold 的图像阈值处理对于某些光照不均的图像,这种全局阈值分割的方法并不能得到好的效果。

图像阈值化操作中,我们更关心的是从二值化图像中分离目标区域和背景区域,仅仅通过固定阈值很难达到理想的分割效果。在图片中的灰度是不均匀的,所以通常情况下图片中不同区域的阈值是不一样的。这样就需要一种方法根据图像不同区域亮度或灰度分布,计算其局部阈值来进行阈值处理。这种方法就是自适应阈值化图像处理,实际上这可以称为局部阈值法,在OpenCV中adaptiveThreshold就是这种方法。

2. adaptiveThreshold函数

2.1 函数调用

import cv2
dst = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)
  • 参数说明:

    • src:源图像,8位的灰度图。
    • maxValue:用于指定满足条件的像素设定的灰度值
    • adaptiveMethod:使用的自适应阈值算法,有2种类型ADAPTIVE_THRESH_MEAN_C算法(局部邻域块均值)或ADAPTIVE_THRESH_GAUSSIAN_C(局部邻域块高斯加权和)。
      • ADAPTIVE_THRESH_MEAN_C的计算方法是计算出邻域的平均值再减去第六个参数C的值;
      • ADAPTIVE_THRESH_GAUSSIAN_C的计算方法是计算出邻域的高斯均匀值再减去第六个参数C的值。
      • 处理边界时使用BORDER_REPLICATE | BORDER_ISOLATED模式。
    • thresholdType:阈值类型,只能是THRESH_BINARY或THRESH_BINARY_INV二者之一,具体参考上面“图像阈值处理”的表格
    • blockSize:表示邻域块大小,用来计算区域阈值,一般选择3、5、7……
    • C:表示常数,它是一个从均匀或加权均值提取的常数,通常为正数,但也可以是负数或零
  • 返回值:

    • dst:处理后的图像

2.2 补充说明

  1. 亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小。
  2. 在灰度图像中,灰度值变化明显的区域往往是物体的轮廓,所以将图像分成一小块一小块的去计算阈值往往会得出图像的轮廓。因此函数adaptiveThreshold除了将灰度图像二值化,也可以进行边缘提取。
  3. 之所以能进行边缘提取,是因为当block很小时,如block_size=3 or 5 or 7时,“自适应”的程度很高,即容易出现block里面的像素值都差不多,这样便无法二值化,而只能在边缘等梯度大的地方实现二值化,结果显得它是边缘提取函数。
  4. 当把blockSize设为比较大的值时,如blockSize=21 or 31 or 41时,adaptiveThreshold便是二值化函数
  5. blockSize必须为大于1的奇数(这里解释一下,size为偶数的话,该block的中心点就不确定了,因此为奇数。)
  6. 如果使用平均值方法,平均值mean为180,差值delta为10,maxValue设为255。那么灰度小于170的像素为0,大于等于170的像素为255,如果是反向二值化,灰度小于170的像素为255,大于等于170的像素为0。

3. 代码示例

import cv2img = cv2.imread('ori.jpg', 0)img1 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 3, 5)
cv2.imwrite("new1.jpg", img1)img2 = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 5)
cv2.imwrite("new1.jpg", img2)

4. 效果

4.1 原图(ori.img)

在这里插入图片描述

4.2 处理后

  • new1.img
    在这里插入图片描述
  • new2.jpg
    在这里插入图片描述

可以看到,

  • 当blockSize小时,轮廓识别效果明显,突出边缘区域。
  • 而blockSize大时,就是一个二值化图像。

5. 参考

【1】https://blog.csdn.net/LaoYuanPython/article/details/108558834

相关文章:

【Opencv--自适应图像二值化】cv2.adaptiveThreshold()

【Opencv–adaptiveThreshold】自适应阈值图像二值化 文章目录【Opencv--adaptiveThreshold】自适应阈值图像二值化1. 介绍2. adaptiveThreshold函数2.1 函数调用2.2 补充说明3. 代码示例4. 效果4.1 原图(ori.img)4.2 处理后5. 参考1. 介绍 在这里 cv2.…...

洛谷P8601[蓝桥杯][2013年第四届真题]剪格子

题目描述如图 11 所示,33 的格子中填写了一些整数。我们沿着图中的红色线剪开,得到两个部分,每个部分的数字和都是 60。本题的要求就是请你编程判定:对给定的 mn 的格子中的整数,是否可以分割为两个部分,使…...

配置alias实现快速生成.gitignore文件

git工具:版本控制开发工具。 cscope工具:用于浏览C源码的工具,类似于ctags。在代码根目录下执行cscope -Rbq,然后产生三个索引文件(cscope.out、cscope.in.out和cscope.po.out三个文件)。 在Linux下使用vi…...

MySQL数据库调优————GROUP BY及DISTINCT优化

GROUP BY 三种处理GROUP BY的方式 松散索引扫描(Loose Index Scan)紧凑索引扫描(Tight Index Scan)临时表(Temporary table) 三种方式的性能一次递减 松散索引扫描 无需扫描满足条件的所有索引键即可返…...

LRU缓存算法

双向链表哈希表(非线程安全) https://leetcode.cn/problems/lru-cache/solutions/259678/lruhuan-cun-ji-zhi-by-leetcode-solution/ /*** LRU算法: 哈希表双向链表实现* 1. 双向链表按照被使用的顺序来存储, 靠近头部的节点是最近使用的, 靠近尾部的节…...

@Configuration注解

Configuration注解介绍 Configuration注解,用于标注一个类是一个spring的配置类(同时,也是一个bean),配置类中可以使用ComponentScan、Import、ImportResource 和 Bean等注解的方式定义beanDefinition。 Target(Elem…...

基于springboot+vue的食疗系统

基于springbootvue的食疗系统 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取项目下载方式🍅 一、项目背景介绍&…...

sklearn学习-朴素贝叶斯

文章目录一、概述1、真正的概率分类器2、sklearn中的朴素贝叶斯二、不同分布下的贝叶斯1、高斯朴素贝叶斯GaussianNB2、探索贝叶斯:高斯朴素贝叶斯擅长的数据集3、探索贝叶斯:高斯朴素贝叶斯的拟合效果与运算速度总结一、概述 1、真正的概率分类器 算法…...

分享112个HTML艺术时尚模板,总有一款适合您

分享112个HTML艺术时尚模板,总有一款适合您 112个HTML艺术时尚模板下载链接:https://pan.baidu.com/s/1D3-mfPOud-f3vy9yLl-bmw?pwdfph2 提取码:fph2 Python采集代码下载链接:采集代码.zip - 蓝奏云 时尚平面模特网站模板 潮…...

用GDB远程调试运行于QEMU的程序

1. 前言 限于作者能力水平,本文可能存在谬误,因此而给读者带来的损失,作者不做任何承诺。 2. 测试环境 本文使用 Ubuntu 16.04.4 LTS QEMU 环境进行调试。 3. 用 GDB 调试 QEMU 内程序 3.1 编写用来调试的程序 我们用 ARM32 来进行调试…...

20 堆排序

文章目录1 堆排序的概念2 堆排序基本思想3 堆排序步骤图解说明4 堆排序的代码实现1 堆排序的概念 1) 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为 O(nlogn)&#xf…...

2023最新文件快递柜系统网站源码 | 匿名口令分享 | 临时文件分享

内容目录一、详细介绍二、效果展示1.部分代码2.效果图展示三、学习资料下载一、详细介绍 2023最新文件快递柜系统网站源码 | 匿名口令分享 | 临时文件分享 很多时候,我们都想将一些文件或文本传送给别人,或者跨端传递一些信息,但是我们又不…...

分片策略(二)

分片策略 基本概念 分片键 用于分片的字段,是将数据库或表拆分的字段,比如,我可以使用user_id作为分片键将用户数据分到不同的表中,这里的user_id就是分片键,除了这种单字段分片,ShardingSphere还支持多…...

Qt之调色板类QPalette的使用

文章目录QPalette调色板类前言代码知识点讲解QPalette调色板类 前言 Qt提供的调色板类QPalette专门用于管理部件的外观显示,相当于部件或对话框的调色板,管理他们所有的颜色信息。每个部件都包含一个QPalette对象,在显示时,按照…...

Kotlin 32. Kotlin 多语言支持

Kotlin 多语言支持 对于 Kotlin 来说&#xff0c;当我们新建一个项目时&#xff0c;会默认在 values/ 文件夹下&#xff0c;生成一个 strings.xml 文件。比如说&#xff0c; <resources><string name"app_name">exampleNewProject</string> <…...

【Flutter入门到进阶】Dart进阶篇---DartVM单线程设计原理

1 虚拟机的指令执行设计 1.1 虚拟机的分类 基于栈的虚拟机&#xff0c;比如JVM虚拟机 基于寄存器的虚拟机&#xff0c;比如Dalvik虚拟机 1.2 虚拟机的概念 首先问一个基本的问题&#xff0c;作为一个虚拟机&#xff0c;它最基本的要实现哪些功能&#xff1f; 他应该能够模拟…...

Dem和NvM(NVRAM Manager)的交集

NVRAM&#xff08;NvM&#xff09;提供了在NVRAM中存储数据Block的机制。 NVRAM Block&#xff08;最大大小取决于配置&#xff09;被分配给Dem&#xff0c;并由Dem实现事件状态信息和相关数据的永久存储&#xff08;例如通电复位&#xff09;。 ECU 状态管理器&#xff08;Ec…...

AI神经网络CNN/RNN/DNN/SNN的区别对比

@版权声明: 本文由 ChatGpt 创作; BiliBili: https://www.bilibili.com/video/BV17D4y1P7pM/?share_source=copy_web&vd_source=6d217e0ff6387a749dc570aba51d36fd 引言 随着人工智能技术的发展,神经网络作为人工智能的核心技术之一,被广泛应用于图像识别、语音识别、…...

【JavaWeb】一文学会JPA

✅✅作者主页&#xff1a;&#x1f517;孙不坚1208的博客 &#x1f525;&#x1f525;精选专栏&#xff1a;&#x1f517;JavaWeb从入门到精通&#xff08;持续更新中&#xff09; &#x1f4cb;&#x1f4cb; 本文摘要&#xff1a;本篇文章主要介绍JPA的概念、注解实现ORM规范…...

【安卓逆向】APK修改与反编译回编译

【安卓逆向】反编译修改APK回编译使用工具流程步骤Apktool相关安装与使用常用命令备查APK签名命令备查实战练习反编译查看修改的地方使用Apktool反编译得到产物文件夹并进行修改回编APK实用场景在日常开发我们可能需要替换某些资源或者修改某些代码&#xff0c;但是我们没有源码…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

基于 TAPD 进行项目管理

起因 自己写了个小工具&#xff0c;仓库用的Github。之前在用markdown进行需求管理&#xff0c;现在随着功能的增加&#xff0c;感觉有点难以管理了&#xff0c;所以用TAPD这个工具进行需求、Bug管理。 操作流程 注册 TAPD&#xff0c;需要提供一个企业名新建一个项目&#…...

iview框架主题色的应用

1.下载 less要使用3.0.0以下的版本 npm install less2.7.3 npm install less-loader4.0.52./src/config/theme.js文件 module.exports {yellow: {theme-color: #FDCE04},blue: {theme-color: #547CE7} }在sass中使用theme配置的颜色主题&#xff0c;无需引入&#xff0c;直接可…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...