当前位置: 首页 > news >正文

一文学会sklearn中的交叉验证的方法

前言

在机器学习中,我们经常需要评估模型的性能。而为了准确评估模型的性能,我们需要使用一种有效的评估方法。五折交叉验证(5-fold cross-validation)就是其中一种常用的模型评估方法,用于评估机器学习模型的性能和泛化能力。

在本文中,我们将介绍五折交叉验证的原理和实现方法,并探讨其在模型评估中的重要性。

sklearn实现交叉验证

数据集使用sklearn中常见的多分类数据,iris数据集。以下是导入库和数据的示例代码:

from sklearn import svm, datasets
from sklearn.model_selection import cross_val_score,cross_validate# iris数据
X, y = datasets.load_iris(return_X_y=True)# 设置参数搜索范围
param_grid = [{'kernel': ['linear', 'poly', 'rbf'], 'C': [0.1, 1.0, 10.0]},
]# 进行网格搜索
grid_search = GridSearchCV(SVR(), param_grid, cv=5)
grid_search.fit(X, y)
best_params = grid_search.best_params_
print(best_params)
# {'C': 10.0, 'kernel': 'rbf'}clf = SVR(kernel="rbf",C=10)

在上面代码中,我们使用iris数据集,对SVR模型进行网格搜索,找到合适的参数:{'C': 10.0, 'kernel': 'rbf'}
接下来我们在使用五折交叉验证对模型进行进一步评估。

第一种方法

使用cross_validate()方法进行验证,以下是示例代码:

# 多分类模型的评估指标
# 多分类模型的
scoring = ["f1_macro","precision_macro","recall_macro"]cross_validate(clf, X, y, cv=5, scoring=scoring)

代码运行结果如下:

{'fit_time': array([0.00298905, 0.00498605, 0.00598025, 0.00199437, 0.0079782 ]),'score_time': array([0.00499058, 0.00897241, 0.00701547, 0.01296639, 0.01496029]),'test_f1_macro': array([0.96658312, 0.96658312, 0.96658312, 0.93333333, 1.        ]),'test_precision_macro': array([0.96969697, 0.96969697, 0.96969697, 0.93333333, 1.        ]),'test_recall_macro': array([0.96666667, 0.96666667, 0.96666667, 0.93333333, 1.        ])}
  • fit_time:模型训练时间
  • score_time:模型评估指标计算时间
  • test_f1_macro:- test_precision_macro:验证指标的test_f1_macro分数结果
  • test_precision_macro:验证指标的precision_macro分数结果
  • test_recall_macro:验证指标的recall_macro分数结果

第二种方法

使用KFlod和StratifiedKFold方法对数据进行交叉验证,两者的主要区别是,KFold是随机划分,对类别不均衡的数据,可能出现全是0标签,或者全是1标签的数据集。StratifiedKFold使用的是分层抽样,若数据集有4个类别,比例是2:3:3:2,则划分后的样本比例约是2:3:3:2。避免随机划分数据集出现的偶然性。

以下是用KFlod和StratifiedKFold方法对数据进行交叉验证的示例代码:

result = {'test_f1_macro':[],'test_precision_macro':[],'test_recall_macro':[]
}
for train, test in kfolder.split(X,y):X_train, X_test = X[train], X[test]y_train, y_test = y[train], y[test]
#      # 训练模型clf = clf.fit(X_train, y_train)# 在训练集上进行预测并计算R2和RMSEy_pred = clf.predict(X_test)f1 = f1_score( y_test, y_pred, average='macro' )p = precision_score(y_test, y_pred, average='macro')r = recall_score(y_test, y_pred, average='macro')result["test_f1_macro"].append(round(f1,2))result["test_precision_macro"].append(round(p,2))result["test_recall_macro"].append(round(r,2))
print(result)

代码运行结果如下:

{'test_f1_macro': [0.96, 0.97, 0.97, 0.97, 0.96],'test_precision_macro': [0.96, 0.97, 0.97, 0.97, 0.97],'test_recall_macro': [0.97, 0.97, 0.97, 0.97, 0.96]}

对比发现,使用第一种方法代码更简洁高效,第二种方法更加详细可控,找到你更喜欢的方式编程即可。

什么是五折交叉验证

在机器学习中,我们通常需要将数据集分为训练集和测试集。训练集用于训练模型,而测试集用于评估模型的性能。然而,使用一次性划分的训练集和测试集可能会导致模型在特定的数据集上表现良好,但在其他数据集上表现较差。这是由于模型可能过度拟合了训练集的特定模式,而无法泛化到其他数据集。

为了解决这个问题,五折交叉验证将数据集划分为五个相等大小的子集,其中四个子集用于训练模型,而剩下的一个子集用于测试模型。这个过程被重复五次,每次使用不同的子集作为测试集。最终,将五次测试结果的平均值作为模型的性能指标。

五折交叉验证的优点之一是可以更好地评估模型的泛化能力。通过使用多个不同的测试集,我们可以更准确地估计模型在未见过的数据上的性能。此外,五折交叉验证还可以更充分地利用数据集,因为每个样本都会在训练集和测试集中出现。

为什么要使用五折交叉验证

五折交叉验证有以下几个优点:

1. 减少过拟合:通过使用多个不同的训练集和测试集组合,可以减少模型对特定训练集的过拟合情况。

2. 更准确的评估模型性能:五折交叉验证可以提供更准确的模型性能评估,因为它使用了多个不同的测试集进行评估。

3. 更好的参数调优:通过使用五折交叉验证,我们可以更好地进行参数调优。我们可以在每一次交叉验证中使用不同的参数组合,并选择性能最好的参数组合。

如何使用五折交叉验证

使用五折交叉验证的步骤如下:

  1. 将数据集划分为五个相等大小的子集。

  2. 对于每一次交叉验证,选择其中的四个子集作为训练集,剩下的一个子集作为测试集。

  3. 使用训练集训练模型,并使用测试集评估模型的性能。

  4. 重复上述步骤五次,每次使用不同的子集作为测试集。

  5. 将五次评估的结果按照特定的计算方式计算作为最终的评估结果。

总结

五折交叉验证是一种常用的评估方法,它可以减少过拟合,提供更准确的模型性能评估,并帮助进行参数调优。在实际应用中,我们可以使用五折交叉验证来评估和改进我们的机器学习模型。

相关文章:

一文学会sklearn中的交叉验证的方法

前言 在机器学习中,我们经常需要评估模型的性能。而为了准确评估模型的性能,我们需要使用一种有效的评估方法。五折交叉验证(5-fold cross-validation)就是其中一种常用的模型评估方法,用于评估机器学习模型的性能和泛…...

【MySQL面试题(66道)】

文章目录 MySQL面试题(66道)基础1.什么是内连接、外连接、交叉连接、笛卡尔积呢?2.那 MySQL 的内连接、左连接、右连接有有什么区别?3.说一下数据库的三大范式?4.varchar 与 char 的区别?5.blob 和 text 有什么区别?6.…...

CSSCI、北核期刊投稿指南(2023年更新)

该数据为经管类的期刊投稿指南,包含发表难度,文章数量,影响因子,用户评价等指标。共5份文件,分别为国内所有期刊信息库、投稿指南(CSSCI版本、CSSCI扩展版本、北大核刊版本、建议期刊版本) 一、…...

构建 NodeJS 影院微服务并使用 docker 部署它(02/4)

一、说明 构建一个微服务的电影网站,需要Docker、NodeJS、MongoDB,这样的案例您见过吗?如果对此有兴趣,您就继续往下看吧。 图片取自网络 — 封面由我制作 这是✌️“构建 NodeJS 影院微服务”系列的第二篇文章。 二、对第一部分的…...

HTML <style> 标签

实例 <html> <head> <style type="text/css"> h1 {color:red} p {color:blue} </style> </head><body> <h1>Header 1</h1> <p>A paragraph.</p> </body> </html>定义和用法 <style>…...

设计模式——迪米特法则

文章目录 基本介绍应用实例应用实例改进迪米特法则注意事项和细节 基本介绍 一个对象应该对其他对象保持最少的了解类与类关系越密切&#xff0c;耦合度越大迪米特法则(Demeter Principle)又叫最少知道原则&#xff0c;即一个类对自己依赖的类知道的越少越好。也就是说&#x…...

区块链基本概念与当前生态简介

区块链是一种去中心化的分布式账本技术&#xff0c;它通过将数据按照时间顺序链接成区块&#xff0c;并使用密码学算法确保数据的安全性和完整性。每个区块包含一定数量的交易记录&#xff0c;而且每个区块都包含了前一个区块的哈希值&#xff0c;这样形成了一个不可篡改的链式…...

mac安装lrzsz出错Command failed with exit 128: git

终端检查电脑是否安装了rz和sz which sz若报错&#xff0c;则需要下载。由于网络和代理的原因&#xff0c;以下命令会报错&#xff1a; brew install lrzsz是因为brew和git配置的代理存在冲突&#xff0c;对于无外网链接功能&#xff0c;无特殊配置的git而言&#xff0c;需要…...

“深入探索JVM内部机制:揭秘Java虚拟机“

标题&#xff1a;深入探索JVM内部机制&#xff1a;揭秘Java虚拟机 摘要&#xff1a;本文将深入探索Java虚拟机&#xff08;JVM&#xff09;的内部机制&#xff0c;从内存管理、垃圾回收、即时编译等方面进行详细剖析。通过了解JVM的工作原理&#xff0c;我们可以更好地理解Jav…...

lvs-DR

lvs-DR数据包流向分析 client向目标VIP发出请求。 DIR根据负载均衡算法一台active的RS&#xff08;RIR1&#xff09;&#xff0c;将RIP1所在的网卡的mac地址作为目标的mac地址&#xff0c;发送到局域网里。 RIRI在局域网中的收到这个帧&#xff0c;拆开后发现目标&#xff08…...

Vue 项目运行 npm install 时,卡在 sill idealTree buildDeps 没有反应

解决方法&#xff1a;切换到淘宝镜像。 以下是之前安装的 xmzs 包&#xff0c;用于控制切换淘宝镜像。 该截图是之前其他项目切换淘宝镜像的截图。 切换镜像后&#xff0c;顺利执行 npm install 。...

ShardingSphere介绍

ShardingSphere从4.X到5.X的内容发生了很多的改变&#xff0c;感兴趣的伙伴可以到ShardingSphere的博客查看各个版本的新特性。https://blog.csdn.net/ShardingSphere?typeblog 此次使用最新版本 shardingShpere5.4.0&#xff0c;实现数据库读写分离、数据分片、分布式事务等…...

【SA8295P 源码分析】44 - 如何替换 NON-HLOS.bin 中的 Wifi Firmware 固件

【SA8295P 源码分析】44 - 如何替换 NON-HLOS.bin 中的 Wifi Firmware 固件 1、提取 NON-HLOS.bin 中的 Wifi Firmware 出来2、把提取出来的 wifi 固件放到代码中3、重新打包生成 NON-HLOS.bin4、将生成的 NON-HLOS.bin 与 老的 NON-HLOS.bin 对比5、使用fastboot 下载测试wifi…...

市面上那里有稳定L2股票行情数据接口?

随着市场的发展和技术的进步&#xff0c;level2股票行情数据接口已经成为股票交易软件的标准配置之一。虽然这些券商软件的功能在很大程度上相似&#xff0c;但它们仍然有自己的特点和优势。 例如&#xff1a;通过股票交易所以其专业的研究报告和丰富的信息服务而受到广泛关注&…...

个人信息保护影响评估(PIA)怎么做?解发条件、实施步骤、操作指南

个人信息保护一直是人们关注的热点话题&#xff0c;互联网、人工智能、大数据等新兴技术的快速发展极大地增强了入侵个人信息的能力&#xff0c;对个人信息的随意收集、违法获取、过度使用、非法买卖、泄露等问题引起了全球各国的普遍关注。同时随着用户的个人信息保护意识的逐…...

HTML <sub> 标签

例子 这段文本包含 <sub>下标</sub> 定义和用法 <sub> 标签可定义下标文本。 包含在 <sub> 标签和其结束标签 </sub> 中的内容将会以当前文本流中字符高度的一半来显示&#xff0c;但是与当前文本流中文字的字体和字号都是一样的。 提示&am…...

C# 设置、获取程序,产品版本号

右键&#xff0c;程序属性。打开“程序集信息” 选择需要设置的版本信息。下面的代码&#xff0c;获取不同的设置内容。 string 其他 Assembly.GetExecutingAssembly().FullName; string 程序集版本 Assembly.GetExecutingAssembly().G…...

LeetCode 面试题 01.04. 回文排列

文章目录 一、题目二、C# 题解 一、题目 给定一个字符串&#xff0c;编写一个函数判定其是否为某个回文串的排列之一。 回文串是指正反两个方向都一样的单词或短语。排列是指字母的重新排列。 回文串不一定是字典当中的单词。 点击此处跳转题目。 示例1&#xff1a; 输入&…...

CentOS 7 安装MySQL8.0.33

一、查看 CentOS 版本 要查看当前 CentOS 版本&#xff0c;你可以执行以下命令&#xff1a; cat /etc/centos-release 该命令将显示当前 CentOS 的版本信息&#xff0c;例如&#xff1a; CentOS Linux release 7.9.2009 (Core) 在这个示例中&#xff0c;CentOS 版本为 7.…...

OpenCV(二)——图像基本处理(四)

目录 4.图像形态学操作 4.1 图像腐蚀 4.2 图像膨胀 4.3 开运算 4.4 闭运算...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

反射获取方法和属性

Java反射获取方法 在Java中&#xff0c;反射&#xff08;Reflection&#xff09;是一种强大的机制&#xff0c;允许程序在运行时访问和操作类的内部属性和方法。通过反射&#xff0c;可以动态地创建对象、调用方法、改变属性值&#xff0c;这在很多Java框架中如Spring和Hiberna…...

html-<abbr> 缩写或首字母缩略词

定义与作用 <abbr> 标签用于表示缩写或首字母缩略词&#xff0c;它可以帮助用户更好地理解缩写的含义&#xff0c;尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时&#xff0c;会显示一个提示框。 示例&#x…...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【从零学习JVM|第三篇】类的生命周期(高频面试题)

前言&#xff1a; 在Java编程中&#xff0c;类的生命周期是指类从被加载到内存中开始&#xff0c;到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期&#xff0c;让读者对此有深刻印象。 目录 ​…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...