LA@n维向量@解析几何向量和线性代数向量
文章目录
- 概念
- n维向量
- 向量类型
- 实向量和复向量
- 行向量和列向量
- 行列向量的转换
- 特殊向量
- 向量运算
- 矩阵的向量分块👺
- 解析几何向量和线性代数向量👺
概念
n维向量
- 由 n n n个有次序的数 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,⋯,an组成的有序数组称为n维向量,简称向量
- 数 a i a_i ai称为向量的第 i i i个分量
向量类型
实向量和复向量
- 分量全为实数的向量称为实向量,分量是复数的向量称为复向量(实向量是从属于复向量的)
- 这里默认讨论的是实向量
行向量和列向量
-
n n n维向量可以写成一行或一列,分别称为行向量,列向量(或分别称为行矩阵,列矩阵)
-
一个 n n n维行向量是 1 × n 1\times{n} 1×n的矩阵
- ( a 1 a 2 ⋮ a n ) \begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix} a1a2⋮an
-
一个 n n n维列向量是 n × 1 n\times{1} n×1的矩阵
- ( a 1 a 2 ⋯ a n ) \begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix} (a1a2⋯an)
-
-
通常以小写希腊字母,例如: α , β , γ , ⋯ \boldsymbol{\alpha,\beta,\gamma,\cdots} α,β,γ,⋯表示向量
-
也可以用小写的粗体的英文字母表示,例如: a , b , ⋯ \boldsymbol{a,b,\cdots} a,b,⋯,或粗正体 a , b , ⋯ \bold{a,b,\cdots} a,b,⋯
-
有时为例书写方便,可以用非粗体: α , β , γ , ⋯ {\alpha,\beta,\gamma,\cdots} α,β,γ,⋯
-
在按行分块和按列分块的分块矩阵中,还可能出现用大写英文字母表示列分块或行分块,例如 A 1 , A 2 , ⋯ A_1,A_2,\cdots A1,A2,⋯
行列向量的转换
-
列向量可以看作行向量的转置
-
习惯上,向量通常默认指列向量,设向量包含 a 1 , a 2 , ⋯ , a n a_1,a_2,\cdots,a_n a1,a2,⋯,an元素
-
列向量和行向量分别表示为
-
a = ( a 1 a 2 ⋮ a n ) = ( a 1 a 2 ⋯ a n ) T a T = ( a 1 a 2 ⋯ a n ) = ( a 1 , a 2 , ⋯ , a n ) \bold{a}=\begin{pmatrix} a_1\\a_2\\\vdots\\a_n \end{pmatrix} =\begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix}^T \\ \bold{a}^T=\begin{pmatrix}a_1&a_2&\cdots&a_n\end{pmatrix}=(a_1,a_2,\cdots,a_n) a= a1a2⋮an =(a1a2⋯an)TaT=(a1a2⋯an)=(a1,a2,⋯,an)
-
为了便于区分符号(文字)所表示的向量是列向量还是行向量,习惯上表示行向量的符号带上一个 T ^T T上标,例如 a T \bold{a}^T aT表示列向量 a \bold{a} a的转置得到的
-
简化书写,由于列向量如果严格竖着写比较占用空间,紧凑性不好,我们可以利用转置性质: a = ( a T ) T \bold{a}=(\bold{a}^T)^T a=(aT)T,将列向量用行向量的转置形式书写展开式,这样行列向量也可以用横着写
-
特殊向量
- 分量全为0的向量称为零向量
- 零向量第 i i i个分量改为1得到的向量是 a i = 1 a_i=1 ai=1的 n n n维基向量
向量运算
-
向量作为一种特殊的矩阵,仍然按照矩阵的运算规则运算
-
k a = k ( a 1 , a 2 , ⋯ , a n ) = ( k a 1 , k a 2 , ⋯ , k a n ) k\bold{a}=k(a_1,a_2,\cdots,a_n)=(ka_1,ka_2,\cdots,ka_n) ka=k(a1,a2,⋯,an)=(ka1,ka2,⋯,kan)
- − a = − ( a 1 , a 2 , ⋯ , a n ) = ( − a 1 , − a 2 , ⋯ , − a n ) -\bold{a}=-(a_1,a_2,\cdots,a_n)=(-a_1,-a_2,\cdots,-a_n) −a=−(a1,a2,⋯,an)=(−a1,−a2,⋯,−an)为向量 − a -\bold{a} −a的负向量
矩阵的向量分块👺
-
A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) A=\begin{pmatrix} a_{11} &a_{12} &\cdots &a_{1n} \\ a_{21} &a_{22} &\cdots &a_{2n} \\ \vdots &\vdots & &\vdots \\ a_{m1} &a_{m2} &\cdots &a_{mn} \\ \end{pmatrix} A= a11a21⋮am1a12a22⋮am2⋯⋯⋯a1na2n⋮amn
-
记 α j = ( a 1 j a 2 j ⋮ a m j ) , j = 1 , 2 , ⋯ , n A = ( α 1 α 2 ⋯ α n ) \\记\alpha_j =\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \\ \end{pmatrix},j=1,2,\cdots,n \\A=\begin{pmatrix} \alpha_{1}&\alpha_{2}&\cdots&\alpha_{n} \\ \end{pmatrix} 记αj= a1ja2j⋮amj ,j=1,2,⋯,nA=(α1α2⋯αn)
-
记 β i T = ( a i 1 , a i 2 , ⋯ , a i n ) , i = 1 , 2 , ⋯ , m A = ( β 1 T β 2 T ⋮ β m T ) 记\beta_i^T=(a_{i1},a_{i2},\cdots,a_{in}),i=1,2,\cdots,m \\ A= \begin{pmatrix} \beta_{1}^T\\ \beta_{2}^T\\ \vdots \\ \beta_{m}^T \\ \end{pmatrix} 记βiT=(ai1,ai2,⋯,ain),i=1,2,⋯,mA= β1Tβ2T⋮βmT
-
A = ( α 1 α 2 ⋯ α n ) = ( β 1 T β 2 T ⋮ β m T ) A=\begin{pmatrix} \alpha_{1}&\alpha_{2}&\cdots&\alpha_{n} \\ \end{pmatrix} =\begin{pmatrix} \beta_{1}^T\\ \beta_{2}^T\\ \vdots \\ \beta_{m}^T \\ \end{pmatrix} A=(α1α2⋯αn)= β1Tβ2T⋮βmT
解析几何向量和线性代数向量👺
- 在解析几何中,我们把"既有大小又有方向的量"叫做向量
- 把可随意平移的有向线段作为向量的几何形象
- 引进坐标系后,这种向量就有了坐标表示: n n n个有次序的实数数组 ( a 1 , ⋯ , a n ) (a_1,\cdots,a_n) (a1,⋯,an)
- n = 1 n=1 n=1对应的是标量
- n = 2 n=2 n=2对应于二维平面向量
- n = 3 n=3 n=3对应于三维空间向量
- 当 n ⩽ 3 n\leqslant{3} n⩽3时, n n n维向量可以把有向线段作为几何形象
- 当 n > 3 n>3 n>3时, n n n维向量不再有几何形象,但是沿用一些几何术语
向量空间
- 几何中,"空间"通常是作为点的集合,构成空间的元素是点,这样的空间叫做点空间
- 我们把 3 3 3维向量的全体所组成的集合: R 3 \mathbb{R}^3 R3={ r = ( x , y , z ) T ∣ x , y , z ∈ R \bold{r}=(x,y,z)^T|x,y,z\in\mathbb{R} r=(x,y,z)T∣x,y,z∈R}称为3维向量空间
- 在点空间取定坐标系后,三维空间中的点 P ( x , y , z ) P(x,y,z) P(x,y,z)与 3 3 3维向量 r = ( x , y , z ) T \bold{r}=(x,y,z)^T r=(x,y,z)T之间有一 一对应关系
- 因此向量空间可以类比为"取定了坐标系"的点空间
- 在讨论向量的运算时,我们把向量看作有向线段
- 在讨论向量集时,把向量 r \bold{r} r看作时 r \bold{r} r为径向的点 P P P,从而把点 P P P的轨迹作为向量集作为向量集的图形
- 例如 Π = { P ( x , y , z ) ∣ a x + b y + c z + d = 0 } \Pi=\{P(x,y,z)|ax+by+cz+d=0\} Π={P(x,y,z)∣ax+by+cz+d=0},结合空间解析几何的知识,是一个平面方程的一般式,因此 Π \Pi Π是一个平面 ( a 2 + b 2 + c 2 > 0 ) (a^2+b^2+c^2>{0}) (a2+b2+c2>0)或 ( a , b , c ) ≠ ( 0 , 0 , 0 ) (a,b,c)\neq{(0,0,0)} (a,b,c)=(0,0,0)
- 由此,向量集 S = { r = ( x , y , z ) T ∣ a x + b y + c z + d = 0 } S=\{\bold{r}=(x,y,z)^T|ax+by+cz+d=0\} S={r=(x,y,z)T∣ax+by+cz+d=0}也叫做向量空间 R 3 \mathbb{R}^3 R3中的平面(3维空间中的2维平面),并把 Π \Pi Π作为向量集S的图形
- 将 x , y , z x,y,z x,y,z替换为 x 1 , x 2 , x 3 x_1,x_2,x_3 x1,x2,x3; x , y , z x,y,z x,y,z替换为 a 1 , a 2 , a 3 a_1,a_2,a_3 a1,a2,a3,则平面方程作 ( ∑ i = 1 3 a i x i ) + b = 0 (\sum_{i=1}^{3}a_ix_i)+b=0 (∑i=13aixi)+b=0
n n n维向量空间
- 设集合 D = { 1 , 2 , ⋯ , n } D=\{1,2,\cdots,n\} D={1,2,⋯,n}
- n n n维向量的全体构成的集合 R 3 \mathbb{R}^3 R3={ x = ( x 1 , x 2 , ⋯ , x n ) T ∣ ∀ i ∈ D , x i ∈ R \bold{x}=(x_1,x_2,\cdots,x_n)^T|\forall{i}\in{D},x_i\in\mathbb{R} x=(x1,x2,⋯,xn)T∣∀i∈D,xi∈R}叫做 n n n维向量空间
n n n维空间的 n − 1 n-1 n−1维超平面
- n n n维向量的集合{ x = ( x 1 , x 2 , ⋯ , x n ) T ∣ ( ∑ i = 1 n a i x i ) + b = 0 \bold{x}=(x_1,x_2,\cdots,x_n)^T|(\sum_{i=1}^{n}a_ix_i)+b=0 x=(x1,x2,⋯,xn)T∣(∑i=1naixi)+b=0}叫做 n n n维向量空间 R n \mathbb{R}^n Rn中的 n − 1 n-1 n−1维超平面
相关文章:
LA@n维向量@解析几何向量和线性代数向量
文章目录 概念n维向量向量类型实向量和复向量行向量和列向量行列向量的转换特殊向量向量运算 矩阵的向量分块👺 解析几何向量和线性代数向量👺向量空间 n n n维向量空间 n n n维空间的 n − 1 n-1 n−1维超平面 概念 n维向量 由 n n n个有次序的数 a …...
go 协程并发数控制
错误的写法: 这里的<-ch 是为了从channel 中读取 数据,为了不使channel通道被写满,阻塞 go 协程数的创建。但是请注意,go workForDraw(v, &wg) 是不阻塞后续的<-ch 执行的,所以就一直go workForDraw(v, &…...
MySQL的安装以及卸载
下载官网 https://www.mysql.com/ 切到下载tab页 找到 MySQL Community Server 或者 MySQL Community (GPL) Downloads --> MySQL Community Server 点击download按钮: 点击download进入下载页面选择No thanks, just start my download就可以开始下载了。 下…...
LRU算法与Caffeine、Redis中的缓存淘汰策略
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...
HTML笔记(3)
表单标签 用于登录、注册界面,以采集用户输入的信息,把信息采集到之后,用户一点按钮,就会把这些信息发送到服务端,服务端就可以把这些数据存储到数据库,所以表单是一个非常重要的html标签,它主要…...
c++——重写(覆盖),实际上对应的就是虚函数
重写是指派生类中存在重新定义的函数。其函数名,参数列表,返回值类型,所有都必须同基类中被重写的函数一致。只有函数体不同(花括号内),派生类调用时会调用派生类的重写函数,不会调用被重写函数…...
算法通关村——字符串反转问题解析
1. 反转字符串 反转字符串 编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 1.1 交换 这一题的思路还是简单的&…...
vue + elementui 中 在弹框中使用了 tree型结构(<el-tree></el-tree>),点击关闭按钮按钮重置tree
vue 项目中使用了element-ui 中 tree,选择了懒加载的模式 通过点击按钮,使得 tree 重新加载 <div class"head-container header-tree" v-if"addDialogVisible"><el-treeref"tree":data"treeData":loa…...
windows adb根据id点击按钮
在 Windows 上使用 adb 根据控件的 ID 来模拟点击按钮,可以使用以下命令: 查看当前屏幕上的所有控件信息,并将其保存到文件中: adb shell uiautomator dump /sdcard/ui.xml 将设备上的 ui.xml 文件下载到计算机上: ad…...
netty(一):NIO——处理消息边界
处理消息边界 为什么要处理边界 因为会存在半包和粘包的问题 1.客户端和服务端约定一个固定长度 优点:简单 缺点:可能造成浪费 2.客户端与服务端约定一个固定分割符 *缺点 效率低 3.先发送长度,再发送数据 TLV格式: type…...
等保测评--安全计算环境--测评方法
安全子类--身份鉴别 a)应对登录的用户进行身份标识和鉴别,身份标识具有唯一性,身份鉴别信息具有复杂度要求并定期更换; 一、测评对象 终端和服务器等设备中的操作系统(包括宿主机和虚拟机操作系统) 、网络设备(包括虚拟网络设备)、安全设备(包括虚拟安全设备)、移动终端…...
open cv学习 (二)色彩空间和通道
色彩空间和通道 demo1 import cv2hsv_image cv2.imread("./img.png")cv2.imshow("img", hsv_image) hsv_image cv2.cvtColor(hsv_image, cv2.COLOR_BGR2HSV) h, s, v cv2.split(hsv_image) cv2.imshow("B", h) cv2.imshow("G", s…...
RS232、RS422、RS485硬件及RS指令、RS2指令应用知识学习
RS232、RS422、RS485硬件及RS指令、RS2指令应用知识学习 一、串行(异步/同步)通讯、并行通讯、以太网通讯 二、单工通讯/半双工通讯/双工通讯 三、常用硬件接口(工业上基本是RS485两线制的接线) 常用硬件接口RS232/RS422/RS485,…...
背景属性样式
🍓背景属性 属性名称中文注释备注background-image背景图片url(img-path)background-color背景颜色background-attachment设置背景固定scroll默认值,随盒子滚动, fixed固定,脱离标准流,固定在浏览器窗口,当…...
蓝桥杯每日N题 (消灭老鼠)
大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...
k8s 用户角色 权限的划分
在Kubernetes中,角色(Role)和角色绑定(RoleBinding)用于划分用户的权限。 Kubernetes中的角色定义了一组特定操作的权限,例如 创建、删除或修改特定资源。而 角色绑定则将角色与用户、组或服务账号进行关联…...
聊一下操作系统 macOS 与 Linux
对于Windows操作系统大家都比较熟悉,也常拿它与Linux操作系统进行比较,两者之间的差异也很明显。但对于macOS 和 Linux的比较不太多,很多人认为它们很相似,因为这两种操作系统都可以运行 Unix 命令。其实详细比较下,两…...
OJ练习第153题——分发糖果
分发糖果 力扣链接:135. 分发糖果 题目描述 n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求,给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果。 相邻两个孩子评分更高的孩子会获得更多的糖果。…...
iOS 通知推送服务端部署测试过程详细版
文章目录 iOS 通知推送服务端部署测试过程详细版前言部署Serverless 版Bark-server1.注册Render 账号2.创建一个Web Service3.连接 repository4.Web Service 设置推送测试1.手机端安装 bark2.设定服务器3.发送测试推送请求参数列表:4.手机推送结果iOS 通知推送服务端部署测试过…...
【COMP282 LEC3 LEC4 LEC5】
LEC 3 Overloading 超载 1. Two functions can have the same name if they have different parameters 2. The compiler will use the one whose parameters match the ones you pass in Performing Addition “” 重载一个operator ,这个operator函数被定义…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
Linux --进程控制
本文从以下五个方面来初步认识进程控制: 目录 进程创建 进程终止 进程等待 进程替换 模拟实现一个微型shell 进程创建 在Linux系统中我们可以在一个进程使用系统调用fork()来创建子进程,创建出来的进程就是子进程,原来的进程为父进程。…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
