LRU算法与Caffeine、Redis中的缓存淘汰策略
推荐阅读
AI文本 OCR识别最佳实践
AI Gamma一键生成PPT工具直达链接
玩转cloud Studio 在线编码神器
玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间
资源分享
「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间
https://drive.uc.cn/s/2aeb6c2dcedd4
AIGC资料包
https://drive.uc.cn/s/6077fc42116d4
https://pan.xunlei.com/s/VN_qC7kwpKFgKLto4KgP4Do_A1?pwd=7kbv#
https://yv4kfv1n3j.feishu.cn/docx/MRyxdaqz8ow5RjxyL1ucrvOYnnH
引言
在现代计算机系统中,缓存是提高系统性能的关键技术之一。为了避免频繁的IO操作,常见的做法是将数据存储在内存中的缓存中,以便快速访问。然而,由于内存资源有限,缓存的大小是有限的,因此需要一种策略来淘汰缓存中的数据,以便为新的数据腾出空间。本文将介绍一种常用的缓存淘汰策略——最近最少使用(Least Recently Used,LRU)算法,并且比较它与Caffeine和Redis中的缓存淘汰策略。
LRU算法
LRU算法是一种基于访问时间的缓存淘汰策略。其核心思想是根据数据的访问顺序来判断数据的热度,将最近最少使用的数据淘汰出缓存。具体实现上,可以使用一个双向链表和一个哈希表来实现LRU缓存。
双向链表用于记录数据的访问顺序,新访问的数据插入链表头部,而最少访问的数据则位于链表尾部。哈希表用于快速查找数据是否在缓存中,并且能够在O(1)的时间复杂度内找到对应的链表节点。
下面是一个示例的LRU缓存的代码实现:
class LRUCache {private int capacity;private Map<Integer, Node> map;private Node head;private Node tail;class Node {int key;int value;Node prev;Node next;}public LRUCache(int capacity) {this.capacity = capacity;this.map = new HashMap<>();this.head = new Node();this.tail = new Node();head.next = tail;tail.prev = head;}public int get(int key) {Node node = map.get(key);if (node == null) {return -1;}moveToHead(node);return node.value;}public void put(int key, int value) {Node node = map.get(key);if (node == null) {node = new Node();node.key = key;node.value = value;map.put(key, node);addToHead(node);if (map.size() > capacity) {Node removed = removeTail();map.remove(removed.key);}} else {node.value = value;moveToHead(node);}}private void addToHead(Node node) {node.prev = head;node.next = head.next;head.next.prev = node;head.next = node;}private void removeNode(Node node) {node.prev.next = node.next;node.next.prev = node.prev;}private void moveToHead(Node node) {removeNode(node);addToHead(node);}private Node removeTail() {Node node = tail.prev;removeNode(node);return node;}
}
上述代码中,LRUCache类是LRU缓存的实现。其中,map用于快速查找节点,head和tail是链表的头尾节点。LRUCache类提供了get和put方法用于获取缓存数据和插入缓存数据。
Caffeine缓存淘汰策略
Caffeine是一种Java缓存库,提供了多种缓存淘汰策略。除了LRU算法外,Caffeine还支持LFU(Least Frequently Used,最不经常使用)和基于时间的淘汰策略。下面是一个示例展示了如何使用Caffeine库来创建一个LRU缓存:
LoadingCache<String, String> cache = Caffeine.newBuilder()
.cacheLoader(key -> fetchDataFromDB(key))
.maximumSize(1000)
.expireAfterWrite(10, TimeUnit.MINUTES)
.removalListener((key, value, cause) -> System.out.println("Key " + key + " was removed from cache"))
.build();String data = cache.get("key");
上述代码中,使用Caffeine的newBuilder方法创建一个缓存,设置了最大缓存大小为1000条记录,并且设置了数据在写入后的10分钟内过期。在缓存中找不到数据时,会调用fetchDataFromDB方法从数据库中获取数据,并将数据放入缓存中。
Redis缓存淘汰策略
Redis是一种内存数据库,也提供了多种缓存淘汰策略。与Caffeine类似,Redis也支持LRU、LFU和基于时间的淘汰策略。
在Redis中,可以使用maxmemory-policy配置项来设置缓存淘汰策略。下面是一个示例展示了如何使用Redis的LRU淘汰策略:
CONFIG SET maxmemory-policy volatile-lru
上述命令将缓存的淘汰策略设置为volatile-lru,即LRU淘汰策略。当缓存空间达到上限时,Redis会根据数据的访问时间来选择最近最少使用的数据进行淘汰。
总结
本文介绍了LRU算法及其在Caffeine和Redis中的应用。LRU算法是一种常用的缓存淘汰策略,通过记录数据的访问顺序来判断数据的热度,从而决定数据的淘汰顺序。Caffeine和Redis都提供了LRU淘汰策略,并且还支持其他的淘汰策略,以满足不同场景下的需求。
通过本文的介绍,读者可以了解到LRU算法的原理及其在实际应用中的实现方式。同时,也能够了解到Caffeine和Redis这两个常用的缓存库是如何使用LRU淘汰策略来提高缓存性能的。希望本文对读者在面试和实际项目中的应用有所帮助。
参考文献:
- Caffeine: a high performance Java caching library
- Redis Documentation
相关文章:
LRU算法与Caffeine、Redis中的缓存淘汰策略
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...
HTML笔记(3)
表单标签 用于登录、注册界面,以采集用户输入的信息,把信息采集到之后,用户一点按钮,就会把这些信息发送到服务端,服务端就可以把这些数据存储到数据库,所以表单是一个非常重要的html标签,它主要…...
c++——重写(覆盖),实际上对应的就是虚函数
重写是指派生类中存在重新定义的函数。其函数名,参数列表,返回值类型,所有都必须同基类中被重写的函数一致。只有函数体不同(花括号内),派生类调用时会调用派生类的重写函数,不会调用被重写函数…...
算法通关村——字符串反转问题解析
1. 反转字符串 反转字符串 编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 s 的形式给出。 不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 1.1 交换 这一题的思路还是简单的&…...
vue + elementui 中 在弹框中使用了 tree型结构(<el-tree></el-tree>),点击关闭按钮按钮重置tree
vue 项目中使用了element-ui 中 tree,选择了懒加载的模式 通过点击按钮,使得 tree 重新加载 <div class"head-container header-tree" v-if"addDialogVisible"><el-treeref"tree":data"treeData":loa…...
windows adb根据id点击按钮
在 Windows 上使用 adb 根据控件的 ID 来模拟点击按钮,可以使用以下命令: 查看当前屏幕上的所有控件信息,并将其保存到文件中: adb shell uiautomator dump /sdcard/ui.xml 将设备上的 ui.xml 文件下载到计算机上: ad…...
netty(一):NIO——处理消息边界
处理消息边界 为什么要处理边界 因为会存在半包和粘包的问题 1.客户端和服务端约定一个固定长度 优点:简单 缺点:可能造成浪费 2.客户端与服务端约定一个固定分割符 *缺点 效率低 3.先发送长度,再发送数据 TLV格式: type…...
等保测评--安全计算环境--测评方法
安全子类--身份鉴别 a)应对登录的用户进行身份标识和鉴别,身份标识具有唯一性,身份鉴别信息具有复杂度要求并定期更换; 一、测评对象 终端和服务器等设备中的操作系统(包括宿主机和虚拟机操作系统) 、网络设备(包括虚拟网络设备)、安全设备(包括虚拟安全设备)、移动终端…...
open cv学习 (二)色彩空间和通道
色彩空间和通道 demo1 import cv2hsv_image cv2.imread("./img.png")cv2.imshow("img", hsv_image) hsv_image cv2.cvtColor(hsv_image, cv2.COLOR_BGR2HSV) h, s, v cv2.split(hsv_image) cv2.imshow("B", h) cv2.imshow("G", s…...
RS232、RS422、RS485硬件及RS指令、RS2指令应用知识学习
RS232、RS422、RS485硬件及RS指令、RS2指令应用知识学习 一、串行(异步/同步)通讯、并行通讯、以太网通讯 二、单工通讯/半双工通讯/双工通讯 三、常用硬件接口(工业上基本是RS485两线制的接线) 常用硬件接口RS232/RS422/RS485,…...
背景属性样式
🍓背景属性 属性名称中文注释备注background-image背景图片url(img-path)background-color背景颜色background-attachment设置背景固定scroll默认值,随盒子滚动, fixed固定,脱离标准流,固定在浏览器窗口,当…...
蓝桥杯每日N题 (消灭老鼠)
大家好 我是寸铁 希望这篇题解对你有用,麻烦动动手指点个赞或关注,感谢您的关注 不清楚蓝桥杯考什么的点点下方👇 考点秘籍 想背纯享模版的伙伴们点点下方👇 蓝桥杯省一你一定不能错过的模板大全(第一期) 蓝桥杯省一你一定不…...
k8s 用户角色 权限的划分
在Kubernetes中,角色(Role)和角色绑定(RoleBinding)用于划分用户的权限。 Kubernetes中的角色定义了一组特定操作的权限,例如 创建、删除或修改特定资源。而 角色绑定则将角色与用户、组或服务账号进行关联…...
聊一下操作系统 macOS 与 Linux
对于Windows操作系统大家都比较熟悉,也常拿它与Linux操作系统进行比较,两者之间的差异也很明显。但对于macOS 和 Linux的比较不太多,很多人认为它们很相似,因为这两种操作系统都可以运行 Unix 命令。其实详细比较下,两…...
OJ练习第153题——分发糖果
分发糖果 力扣链接:135. 分发糖果 题目描述 n 个孩子站成一排。给你一个整数数组 ratings 表示每个孩子的评分。 你需要按照以下要求,给这些孩子分发糖果: 每个孩子至少分配到 1 个糖果。 相邻两个孩子评分更高的孩子会获得更多的糖果。…...
iOS 通知推送服务端部署测试过程详细版
文章目录 iOS 通知推送服务端部署测试过程详细版前言部署Serverless 版Bark-server1.注册Render 账号2.创建一个Web Service3.连接 repository4.Web Service 设置推送测试1.手机端安装 bark2.设定服务器3.发送测试推送请求参数列表:4.手机推送结果iOS 通知推送服务端部署测试过…...
【COMP282 LEC3 LEC4 LEC5】
LEC 3 Overloading 超载 1. Two functions can have the same name if they have different parameters 2. The compiler will use the one whose parameters match the ones you pass in Performing Addition “” 重载一个operator ,这个operator函数被定义…...
panda3d加载模型复习和python面向对象编程属性学习
运行一个python示例;然后去除一些代码,只剩下加载模型相关,如下; from panda3d.core import loadPrcFileData # Configure the parallax mapping settings (these are just the defaults) loadPrcFileData("", "p…...
使用 Node.js 生成优化的图像格式
使用 Node.js 生成优化的图像格式 图像是任何 Web 应用程序的重要组成部分,但如果优化不当,它们也可能成为性能问题的主要根源。在本文中,我们将介绍如何使用 Node.js 自动生成优化的图像格式,并以最适合用户浏览器的格式显示它们…...
【WinAPI详解】<CreateWindowEx详解>
函数原型: HWND CreateWindowEx(DWORD dwExStyle, //窗口的扩展风格(加强版专有)LPCTSTR lpClassName, //已经注册的窗口类名称LPCTSTR lpWindowName,//窗口标题栏的名字DWORD dwStyle, //窗口的基本风格int x, //窗口左上角水平坐标位置int …...
UE5 学习系列(二)用户操作界面及介绍
这篇博客是 UE5 学习系列博客的第二篇,在第一篇的基础上展开这篇内容。博客参考的 B 站视频资料和第一篇的链接如下: 【Note】:如果你已经完成安装等操作,可以只执行第一篇博客中 2. 新建一个空白游戏项目 章节操作,重…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
装饰模式(Decorator Pattern)重构java邮件发奖系统实战
前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
基于服务器使用 apt 安装、配置 Nginx
🧾 一、查看可安装的 Nginx 版本 首先,你可以运行以下命令查看可用版本: apt-cache madison nginx-core输出示例: nginx-core | 1.18.0-6ubuntu14.6 | http://archive.ubuntu.com/ubuntu focal-updates/main amd64 Packages ng…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
自然语言处理——Transformer
自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN,但是…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
