[oneAPI] 手写数字识别-LSTM
[oneAPI] 手写数字识别-LSTM
- 手写数字识别
- 参数与包
- 加载数据
- 模型
- 训练过程
- 结果
 
- oneAPI
比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517
Intel® DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolkitSamples/
手写数字识别
使用了pytorch以及Intel® Optimization for PyTorch,通过优化扩展了 PyTorch,使英特尔硬件的性能进一步提升,让手写数字识别问题更加的快速高效
 
使用MNIST数据集,该数据集包含了一系列以黑白图像表示的手写数字,每个图像的大小为28x28像素,数据集组成如下:
- 训练集:包含60,000个图像和标签,用于训练模型。
- 测试集:包含10,000个图像和标签,用于测试模型的性能。
每个图像都被标记为0到9之间的一个数字,表示图像中显示的手写数字。这个数据集常常被用来验证图像分类模型的性能,特别是在计算机视觉领域。
参数与包
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transformsimport intel_extension_for_pytorch as ipex# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')# Hyper-parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 2
learning_rate = 0.01
加载数据
# MNIST dataset
train_dataset = torchvision.datasets.MNIST(root='../../data/',train=True,transform=transforms.ToTensor(),download=True)test_dataset = torchvision.datasets.MNIST(root='../../data/',train=False,transform=transforms.ToTensor())# Data loader
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,batch_size=batch_size,shuffle=True)test_loader = torch.utils.data.DataLoader(dataset=test_dataset,batch_size=batch_size,shuffle=False)
模型
# Recurrent neural network (many-to-one)
class RNN(nn.Module):def __init__(self, input_size, hidden_size, num_layers, num_classes):super(RNN, self).__init__()self.hidden_size = hidden_sizeself.num_layers = num_layersself.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)self.fc = nn.Linear(hidden_size, num_classes)def forward(self, x):# Set initial hidden and cell states h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)# Forward propagate LSTMout, _ = self.lstm(x, (h0, c0))  # out: tensor of shape (batch_size, seq_length, hidden_size)# Decode the hidden state of the last time stepout = self.fc(out[:, -1, :])return out
训练过程
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)# Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)# Forward passoutputs = model(images)loss = criterion(outputs, labels)# Backward and optimizeoptimizer.zero_grad()loss.backward()optimizer.step()if (i + 1) % 100 == 0:print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, num_epochs, i + 1, total_step, loss.item()))# Test the model
model.eval()
with torch.no_grad():correct = 0total = 0for images, labels in test_loader:images = images.reshape(-1, sequence_length, input_size).to(device)labels = labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))# Save the model checkpoint
torch.save(model.state_dict(), 'model.ckpt')
结果

oneAPI
import intel_extension_for_pytorch as ipex# Device configuration
device = torch.device('xpu' if torch.cuda.is_available() else 'cpu')# 模型
model = ConvNet(num_classes).to(device)# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)'''
Apply Intel Extension for PyTorch optimization against the model object and optimizer object.
'''
model, optimizer = ipex.optimize(model, optimizer=optimizer)
相关文章:
 
[oneAPI] 手写数字识别-LSTM
[oneAPI] 手写数字识别-LSTM 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolk…...
 
通过css设置filter 属性,使整个页面呈现灰度效果,让整个网页变灰
通过css设置filter 属性设置页面整体置灰 效果图: 通过设置 filter 属性为 grayscale(100%),页面中的所有元素都会被应用灰色滤镜效果,使整个页面呈现灰度效果。 <style type"text/css"> html { filter: grayscale(100%); -webkit-f…...
ahooks.js:一款强大的React Hooks库及其API使用教程(一)
一、ahooks.js简介二、ahooks.js安装三、ahooks.js API介绍与使用教程1. useRequest2. useAntdTable3. useSize4. useBoolean5. useToggle6. useHover7. useDebounce8. useEventListener9. useFusionTable10. useKeyPress11. useLoading12. usePrevious13. useForm14. useUpdat…...
拟合圆算法源码(商业)
1、输入一些点 2、执行fitCircle算法 3、输出圆心(x,y)及半径r Box fitCircle(const std::vector<cv::Point2f>& points) {Box box;box.x = 0.0f;box.y = 0.0f;box.r = 0.0f;if (points.size() < 3){return box;}int i = 0;double X1 = 0;double Y1 = 0;doubl…...
第一章 IRIS 编程简介
文章目录 第一章 IRIS 编程简介简介ClassesRoutines 第一章 IRIS 编程简介 简介 IRIS 是一个高性能多模型数据平台,具有内置的通用编程语言 ObjectScript,以及对 Python 的内置支持。 IRIS 支持多进程并提供并发控制。每个进程都可以直接、高效地访问…...
 
Leetcode-每日一题【剑指 Offer 32 - III. 从上到下打印二叉树 III】
题目 请实现一个函数按照之字形顺序打印二叉树,即第一行按照从左到右的顺序打印,第二层按照从右到左的顺序打印,第三行再按照从左到右的顺序打印,其他行以此类推。 例如: 给定二叉树: [3,9,20,null,null,15,7], 3 / \ 9 20…...
 
.NET应用UI组件DevExpress XAF v23.1 - 全新的日程模块
DevExpress XAF是一款强大的现代应用程序框架,允许同时开发ASP.NET和WinForms。DevExpress XAF采用模块化设计,开发人员可以选择内建模块,也可以自行创建,从而以更快的速度和比开发人员当前更强有力的方式创建应用程序。 在新版中…...
UBuntu18.04 Qt之双HDMI屏切换
UBuntu18.04 Qt之双HDMI接2个4K屏并分别设置分辨率、主屏、副屏 一、设置HDMI-2为主屏 在main函数里面添加: #include "mainwindow.h" #include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv);{long nTotal 0;c…...
c#配置提供者
在 C# 中,配置系统是一种用于管理应用程序配置数据的机制。通常情况下,应用程序的配置数据包括连接字符串、应用程序设置、环境变量等。C# 配置系统允许您轻松地读取和使用这些配置数据,而不需要硬编码在代码中。 除了默认的配置提供者外,C# 配置系统还支持其他配置提供者…...
 
python rtsp 硬件解码 二
上次使用了python的opencv模块 述说了使用PyNvCodec 模块,这个模块本身并没有rtsp的读写,那么读写rtsp是可以使用很多方法的,我们为了输出到pytorch直接使用AI程序,简化rtsp 输入,可以直接使用ffmpeg的子进程 方法一 …...
 
搭载KaihongOS的工业平板、机器人、无人机等产品通过3.2版本兼容性测评,持续繁荣OpenHarmony生态
近日,搭载深圳开鸿数字产业发展有限公司(简称“深开鸿”)KaihongOS软件发行版的工业平板、机器人、无人机等商用产品均通过OpenAtom OpenHarmony(以下简称“OpenHarmony”)3.2 Release版本兼容性测评,获颁O…...
 
AIGC音视频工具分析和未来创新机会思考
编者按:相较于前两年,2023年音视频行业的使用量增长缓慢,整个音视频行业遇到瓶颈。音视频的行业从业者面临着相互竞争、不得不“卷”的状态。我们需要进行怎样的创新,才能从这种“卷”的状态中脱离出来?LiveVideoStack…...
Mybatis——返回值(resultType&resultMap)详解
之前的文章里面有对resultType和resultMap的简单介绍这一期出点详细的 resultType: 1,返回值为简单类型。 直接使用resultType“类型”,如string,Integer等。 String getEmpNameById(Integer id); <!-- 指定 result…...
多IP服务器有什么作用
1.利于搜索引擎收录: 使用多IP应用云服务器可使一个IP对应一个网站,使各个网站之间的独立性更强,这样搜索引擎会评定该网站质量更高, 更容易抓取到该网站的页面,便于搜索引擎收录。 2.提高网站的权重和排名ÿ…...
Python-主线程控制子线程结束
需求:主线程创建子线程和键盘输入监听线程,然后等待它们退出。当用户输入 q 后, 子线程会收到停止信号并退出,键盘输入监听线程也会退出,最终主线程退出。 import threading import time import keyboardclass Worker…...
 
水电站防雷工程综合解决方案
水电站防雷工程是指为了保护水电站的建筑物、设备和人员免受雷电危害而采取的一系列技术措施。水电站防雷工程的主要内容包括接地装置、引下线、接闪器、等电位连接、屏蔽、综合布线和电涌保护器等分项工程。水电站防雷工程的施工和质量验收应遵循国家标准《建筑物防雷工程施工…...
 
每日刷题(翻转+二分+BFS)
食用指南:本文为作者刷题中认为有必要记录的题目 ♈️今日夜电波:凄美地—郭顶 1:10 ━━━━━━️💟──────── 4:10 🔄 ◀️ ⏸ ▶️ ☰…...
 
系统卡死问题分析
CPU模式 CPU Frequency Scaling (CPUFREQ) Introduction CPU频率调节设备驱动程序的功能。该驱动程序允许在运行过程中更改CPU的时钟频率。一旦CPU频率被更改,必要的电源供应电压也会根据设备树脚本(DTS)中定义的电压值进行变化。通过降低时钟速度,这种方法可以减少功耗…...
 
中大许少辉博士中国建筑出版传媒八一新书《乡村振兴战略下传统村落文化旅游设计》百度百科新闻
中大许少辉博士中国建筑出版传媒八一新书《乡村振兴战略下传统村落文化旅游设计》百度百科新闻: 乡村振兴战略下传统村落文化旅游设计 - 百度百科 https://baike.baidu.com/item/乡村振兴战略下传统村落文化旅游设计/62588677 概览 《乡村振兴战略下传统村落文化旅游…...
int和Integer的不同
一个奇怪的事情,在int[]用 Arrays.asList 转List 的时候,转过去的是List<int[]>。而不是List<int>类型的。于是试了String和Integer类型。发现只有Int[]有问题。 package com.test.lc;import java.util.ArrayList; import java.util.Arrays…...
 
Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
 
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
 
大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
 
边缘计算医疗风险自查APP开发方案
核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...
 
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
 
抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
 
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
 
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
 
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
