当前位置: 首页 > news >正文

机器学习与模式识别3(线性回归与逻辑回归)

一、线性回归与逻辑回归简介

线性回归主要功能是拟合数据,常用平方误差函数。

逻辑回归主要功能是区分数据,找到决策边界,常用交叉熵。

二、线性回归与逻辑回归的实现

1.线性回归

利用回归方程对一个或多个特征值和目标值之间的关系进行建模的一种分析方式,应用于房价预测等。

y = ax + b

变量 Y 表示输出变量,X 表示输入变量,a 和 b 是可调整的系数,可以对 a 和 b 进行调整,直到与所有点都关联的错误总数达到最低值,以此获得回归公式。

可以使用线性回归确定两个连续列之间的关系。 例如,您可以使用线性回归根据生产或销售数据计算趋势线。 还可以使用线性回归作为基础,来开发更复杂的数据挖掘模型,以评估数据列之间的关系。

2.逻辑回归

在线性回归的输出端加上sigmoid激活函数,使得输出>0.5判为1类别,<0.5判为0类别,应用于分类问题(广告点击率、是否为垃圾邮件等)。

优点:模型简单

缺点:sigmoid存在饱和区,容易梯度消失或梯度爆炸

3.优化方法都是梯度下降法

迭代式求解的方式,逐渐去计算最小值的过程。

梯度:是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。

梯度是导数的高维形式,多维函数的梯度等于一维函数的导数,导数是增长的方向,所以梯度其实是增长的方向,那么,梯度的反方向就是增长的反方向,下降。

通过不断迭代计算函数的梯度,判断该点的某一方向和目标之间的距离,最终求得最小的损失函数和相关参数,为建立线性模型提供支持。

相关文章:

机器学习与模式识别3(线性回归与逻辑回归)

一、线性回归与逻辑回归简介 线性回归主要功能是拟合数据&#xff0c;常用平方误差函数。 逻辑回归主要功能是区分数据&#xff0c;找到决策边界&#xff0c;常用交叉熵。 二、线性回归与逻辑回归的实现 1.线性回归 利用回归方程对一个或多个特征值和目标值之间的关系进行建模…...

vue启动配置npm run serve,动态环境变量,根据不同环境访问不同域名

首先创建不同环境的配置文件&#xff0c;比如域名和一些常量&#xff0c;创建一个env文件,先看看文件目录 env.dev就是dev环境的域名&#xff0c;.test就是test环境域名&#xff0c;其他同理&#xff0c;然后配置package.json文件 {"name": "require-admin&qu…...

HTML <strike> 标签

HTML5 中不支持 <strike> 标签在 HTML 4 中用于定义删除线文本。 定义和用法 <strike> 标签可定义加删除线文本定义。 浏览器支持 元素ChromeIEFirefoxSafariOpera<strike>YesYesYesYesYes 所有浏览器都支持 <strike> 标签。 HTML 与 XHTML 之间…...

数学建模-模型详解(1)

规划模型 线性规划模型&#xff1a; 当涉及到线性规划模型实例时&#xff0c;以下是一个简单的示例&#xff1a; 假设我们有两个变量 x 和 y&#xff0c;并且我们希望最大化目标函数 Z 5x 3y&#xff0c;同时满足以下约束条件&#xff1a; x > 0y > 02x y < 10…...

MySQL 数据库表的基本操作

一、数据库表概述 在数据库中&#xff0c;数据表是数据库中最重要、最基本的操作对象&#xff0c;是数据存储的基本单位。数据表被定义为列的集合&#xff0c;数据在表中是按照行和列的格式来存储的。每一行代表一条唯一的记录&#xff0c;每一列代表记录中的一个域。 二、数…...

企业微信电脑端开启chrome调试

首先&#xff1a; Mac端调试开启的快捷键&#xff1a;control shift command d Window端调试开启的快捷键: control shift alt d 这边以Mac为例&#xff0c;我们可以在电脑顶部看到调试的入口&#xff1a; 然后我们点击 『浏览器、webView相关』菜单&#xff0c;勾选上…...

Maven官网下载配置新仓库

1.Maven的下载 Maven的官网地址&#xff1a;Maven – Download Apache Maven 点击Download&#xff0c;查找 Files下的版本并下载如下图&#xff1a; 2.Maven的配置 自己在D盘或者E盘创建一个文件夹&#xff0c;作为本地仓库&#xff0c;存放项目依赖。 将下载好的zip文件进行解…...

银河麒麟V10 达梦安装教程

安装前先准备要安装包&#xff0c;包需要需要区分X86和arm架构。 版本为&#xff1a;dm8_20230419_FTarm_kylin10_sp1_64.iso 达梦数据库下载地址&#xff1a; https://www.aliyundrive.com/s/Qm7Es5BQM5U 第一步创建用户 su - root 1. 创建安装用户组 dminstall。 groupad…...

Python操作MongoDB数据库

安装MongoDB库 pip install pymongopython 代码 Author: tkhywang 2810248865qq.com Date: 2023-08-21 10:22:30 LastEditors: tkhywang 2810248865qq.com LastEditTime: 2023-08-21 11:17:45 FilePath: \PythonProject02\MongoDB 数据库.py Description: 这是默认设置,请设置…...

《HeadFirst设计模式(第二版)》第十一章代码——代理模式

代码文件目录&#xff1a; RMI&#xff1a; MyRemote package Chapter11_ProxyPattern.RMI;import java.rmi.Remote; import java.rmi.RemoteException;public interface MyRemote extends Remote {public String sayHello() throws RemoteException; }MyRemoteClient packa…...

QT的工程文件认识

目录 1、QT介绍 2、QT的特点 3、QT模块 3.1基本模块 3.2扩展模块 4、QT工程创建 1.选择应用的窗体格式 2.设置工程的名称与路径 3.设置类名 4.选择编译器 5、QT 工程解析 xxx.pro 工程配置 xxx.h 头文件 main.cpp 主函数 xxx.cpp 文件 6、纯手工创建一个QT 工程…...

typeScript安装及TypeScript tsc 不是内部或外部命令,也不是可运行的程序或批处理文件解决办法

一、typeScript安装&#xff1a; 1、首先确定系统中已安装node, winr 输入cmd 打开命令行&#xff0c;得到版本号证明系统中已经安装node node -v //v18.17.0 2、使用npm 全局安装typeScript # 全局安装 TypeScript npm i -g typescript 二、检查是否安装成功ts #检查t…...

SWUST 派森练习题:P111. 摩斯密码翻译器

描述 摩斯密码&#xff08;morse code)&#xff0c;又称摩斯电码、摩尔斯电码&#xff08;莫尔斯电码&#xff09;&#xff0c;是一种时通时断的信号代码&#xff0c;通过不同的信号排列顺序来表达不同的英文字母、数字和标点符号&#xff1b;通信时&#xff0c;将英文字母等内…...

如何在控制台查看excel内容

背景 最近发现打开电脑的excel很慢&#xff0c;而且使用到的场景很少&#xff0c;也因为mac自带了预览的功能。但是shigen就是闲不住&#xff0c;想自己搞一个excel预览软件&#xff0c;于是在一番技术选型之后&#xff0c;我决定使用python在控制台显示excel的内容。 具体的需…...

Echarts、js编写“中国主要城市空气质量对比”散点图 【亲测】

本次实验通过可视化工具Echarts来对全国主要城市的&#xff30;&#xff2d;2.5的值进行直观的展示&#xff0c;使人们可以快速的发现信息的关键点&#xff0c;从而对各个城市的空气质量情况有直观的了解。 先看效果 上代码&#xff1a; <!DOCTYPE html> <html>&…...

linux不分区直接在文件系统根上开swap

root下&#xff0c;直接创swapfile dd if/dev/zero of/swapfile bs1M count8192然后 mkswap swapfile swapon swapfile修改fstab # /etc/fstab: static file system information. # # Use blkid to print the universally unique identifier for a # device; this may be us…...

React请求机制优化思路 | 京东云技术团队

说起数据加载的机制&#xff0c;有一个绕不开的话题就是前端性能&#xff0c;很多电商门户的首页其实都会做一些垂直的定制优化&#xff0c;比如让请求在页面最早加载&#xff0c;或者在前一个页面就进行预加载等等。随着react18的发布&#xff0c;请求机制这一块也是被不断谈起…...

CompletableFuture总结和实践

CompletableFuture被设计在Java中进行异步编程。异步编程意味着在主线程之外创建一个独立的线程&#xff0c;与主线程分隔开&#xff0c;并在上面运行一个非阻塞的任务&#xff0c;然后通知主线程进展&#xff0c;成功或者失败。 一、概述 1.CompletableFuture和Future的区别&…...

使用Nginx调用网关,然后网关调用其他微服务

问题前提&#xff1a;目前我的项目是已经搭建了网关根据访问路径路由到微服务&#xff0c;然后现在我使用了Nginx将静态资源都放在了Nginx中&#xff0c;然后我后端定义了一个接口访问一个html页面&#xff0c;但是html页面要用到静态资源&#xff0c;这个静态资源在我的后端是…...

windows搭建WebDAV服务,并内网穿透公网访问【无公网IP】

windows搭建WebDAV服务&#xff0c;并内网穿透公网访问【无公网IP】 文章目录 windows搭建WebDAV服务&#xff0c;并内网穿透公网访问【无公网IP】1. 安装IIS必要WebDav组件2. 客户端测试3. cpolar内网穿透3.1 打开Web-UI管理界面3.2 创建隧道3.3 查看在线隧道列表3.4 浏览器访…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装

以下是基于 vant-ui&#xff08;适配 Vue2 版本 &#xff09;实现截图中照片上传预览、删除功能&#xff0c;并封装成可复用组件的完整代码&#xff0c;包含样式和逻辑实现&#xff0c;可直接在 Vue2 项目中使用&#xff1a; 1. 封装的图片上传组件 ImageUploader.vue <te…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

用机器学习破解新能源领域的“弃风”难题

音乐发烧友深有体会&#xff0c;玩音乐的本质就是玩电网。火电声音偏暖&#xff0c;水电偏冷&#xff0c;风电偏空旷。至于太阳能发的电&#xff0c;则略显朦胧和单薄。 不知你是否有感觉&#xff0c;近两年家里的音响声音越来越冷&#xff0c;听起来越来越单薄&#xff1f; —…...

算法岗面试经验分享-大模型篇

文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer &#xff08;1&#xff09;资源 论文&a…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...