111. 二叉树的最小深度
111. 二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int minDepth(TreeNode* root) {if(root==nullptr){return 0;}else if(root->left==nullptr && root->right==nullptr){return 1;}else if(root->left==nullptr){return minDepth(root->right)+1; }else if(root->right==nullptr){return minDepth(root->left)+1;}else{return min(minDepth(root->left),minDepth(root->right))+1;}}
};
相关文章:
111. 二叉树的最小深度
111. 二叉树的最小深度 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeN…...
SpringMVC归纳与总结
前言 Spring的核心是IOC,一种依赖反转的解耦思想。MVC是一种处理Web请求的架构模式,当两者的作用结合,就形成了SpringMVC。 组成及运行原理 1. 两次映射 2. 为什么用适配器模式 过滤器与拦截器 1. 范围 静态资源与动态资源2. 生命周期…...
Python学习笔记_进阶篇(三)_django知识(二)
本章内容 Django model Model 基础配置 django默认支持sqlite,mysql, oracle,postgresql数据库。 <1> sqlite django默认使用sqlite的数据库,默认自带sqlite的数据库驱动 引擎名称:django.db.backends.sqlite3 <2>mysql …...
RISC-V 整型通用寄存器介绍
简介 RISC-V64位/32位提供了32个整型通用寄存器,编号是x0~x31,这些整型通用寄存器的宽度与架构位数一致。 浮点数寄存器与整形寄存器一样也提供了32个:f0~f31,位数与架构位数一致。 通用寄存器介绍 零寄存器 x0/zero x0寄存…...
学习Vue:【性能优化】异步组件和懒加载
在Vue.js应用开发中,性能优化是一个至关重要的主题,而异步组件和懒加载是提升性能的有效方法之一。本文将介绍什么是异步组件和懒加载,以及如何在Vue.js中应用这些技术来提升应用性能。 异步组件和懒加载 异步组件 异步组件是指在需要的时候…...
pdf格式文件下载不预览,云存储的跨域解决
需求背景 后端接口中返回的是pdf文件路径比如: pdf文件路径 (https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf) 前端适配是这样的 <ahref"https://wangzhendongsky.oss-cn-beijing.aliyuncs.com/wzd-test.pdf&…...
httplib + nlohmann::json上传数据时中文乱码解决
1、nlohmann::json 1.1 编码格式使用UTF-8 参考 nlohmann::json 中文乱码解决方案 (1)将数据先转为UTF-8格式 2、httplib 2.1 上传数据前 (1)调用httplib::Response对象的set_header()方法来设置编码格式 httplib::Response res…...
JavaScript中的设计模式之一--单例模式和模块
虽然有一种疯狂天才的感觉可能很诱人,但重新发明轮子通常不是设计软件的最佳方法。很有可能有人已经遇到了和你一样的问题,并以一种聪明的方式解决了它。这样的最佳实践在形式化后被称为设计模式。今天我们来看看它们的概念,并检查单例模式和…...
回归预测 | MATLAB实现GAM广义加性模型多输入单输出回归预测(多指标,多图)
回归预测 | MATLAB实现GAM广义加性模型多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现GAM广义加性模型多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计参考资料 效果一览 基本…...
css学习4(背景)
1、CSS中,颜色值通常以以下方式定义: 十六进制 - 如:"#ff0000"RGB - 如:"rgb(255,0,0)"颜色名称 - 如:"red" 2、background-image 属性描述了元素的背景图像. 默认情况下,背景图像进…...
二、SQL,如何实现表的创建和查询
1、新建表格(在当前数据库中新建一个表格): (1)基础语法: create table [表名]( [字段:列标签] [该列数据类型] comment [字段注释], [字段:列标签] [该列数据类型] comment [字段注释], ……,…...
大数据及软件教学与实验专业实训室建设方案
一 、系统概述 大数据及软件教学与实验大数据及软件教学与实验在现代教育中扮演重要角色,这方面的教学内容涵盖了大数据处理、数据分析、数据可视化和大数据应用等多个方面。以下是大数据及软件教学与实验的一般内容:1. 数据基础知识:教授学生…...
信创办公–基于WPS的EXCEL最佳实践系列 (公式和函数)
信创办公–基于WPS的EXCEL最佳实践系列 (公式和函数) 目录 应用背景相关知识操作步骤1、认识基本的初级函数2、相对引用,绝对引用,混合引用3、统计函数4、文本函数 应用背景 熟练掌握Excel的函数工具能让我们在日常的使用中更加方…...
【Apollo】自动驾驶感知——毫米波雷达
作者简介: 辭七七,目前大一,正在学习C/C,Java,Python等 作者主页: 七七的个人主页 文章收录专栏: 七七的闲谈 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖…...
SpringBoot部署到腾讯云
SpringBoot部署到腾讯云 此处默认已经申请到腾讯云服务器,因为本人还没有申请域名,所以就直接使用的ip地址 XShell连接到腾讯云 主机中填写腾讯云的公网ip地址 公网ip地址在下图中找到 接下来填写服务器的用户名与密码 一般centOS用户名为rootÿ…...
Git 设置代理
Git 传输分两种协议,SSH和 http(s),设置代理也需要分两种。 http(s) 代理 Command Line 使用 命令行 模式,可以在Powershell中使用以下命令设置代理: $env:http_proxy"http://127.0.0.1:7890" $env:https_proxy&quo…...
基于Spring Boot的机场VIP客户管理系统的设计与实现(Java+spring boot+MySQL)
获取源码或者论文请私信博主 演示视频: 基于Spring Boot的机场VIP客户管理系统的设计与实现(Javaspring bootMySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java s…...
图数据库_Neo4j学习cypher语言_使用CQL_构建明星关系图谱_导入明星数据_导入明星关系数据_创建明星关系---Neo4j图数据库工作笔记0009
首先找到明星数据 可以看到有一个sheet1,是,记录了所有的关系的数据 然后比如我们搜索一个撒贝宁,可以看到撒贝宁的数据 然后这个是构建的CQL语句 首先我们先去启动服务 neo4j console 然后我们再来看一下以前导入的,可以看到导入很简单, 就是上面有CQL 看一下节点的属性...
恒运资本:算力概念强势拉升,亚康股份“20cm”涨停,首都在线等大涨
算力概念21日盘中强势拉升,到发稿,亚康股份“20cm”涨停,首都在线、汇金股份涨逾11%,鸿博股份亦涨停,南凌科技涨近9%,科创信息、神州数码、铜牛信息等涨超7%。 音讯面上,8月19日,202…...
Neo4j之union基础
UNION 用于将多个 MATCH 或 RETURN 子句的结果合并为一个结果集。它可以用来合并不同模式的节点和关系,或者将多个查询的结果合并在一起。以下是一些常用的示例和解释: 基本用法: MATCH (p:Person) WHERE p.age > 30 RETURN p.name AS n…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
