当前位置: 首页 > news >正文

算法刷题打卡第95天: 最大平均通过率

最大平均通过率

难度:中等

一所学校里有一些班级,每个班级里有一些学生,现在每个班都会进行一场期末考试。给你一个二维数组 classes ,其中 classes[i] = [passi, totali] ,表示你提前知道了第 i 个班级总共有 totali 个学生,其中只有 passi 个学生可以通过考试。

给你一个整数 extraStudents ,表示额外有 extraStudents 个聪明的学生,他们 一定 能通过任何班级的期末考。你需要给这 extraStudents 个学生每人都安排一个班级,使得 所有 班级的 平均 通过率 最大

一个班级的 通过率 等于这个班级通过考试的学生人数除以这个班级的总人数。平均通过率 是所有班级的通过率之和除以班级数目。

请你返回在安排这 extraStudents 个学生去对应班级后的 最大 平均通过率。与标准答案误差范围在 10−510^{-5}105 以内的结果都会视为正确结果。

示例 1:

输入:classes = [[1,2],[3,5],[2,2]], extraStudents = 2
输出:0.78333
解释:你可以将额外的两个学生都安排到第一个班级,平均通过率为 (3/4 + 3/5 + 2/2) / 3 = 0.78333 。

示例 2:

输入:classes = [[2,4],[3,9],[4,5],[2,10]], extraStudents = 4
输出:0.53485

优先队列

思路:

由于班级总数不会变化,因此题目所求「最大化平均通过率」等价于「最大化总通过率」。设某个班级的人数为 total\textit{total}total,其中通过考试的人数为 pass\textit{pass}pass,那么给这个班级安排一个额外通过考试的学生,其通过率会增加:

pass+1total+1−passtotal\frac{\textit{pass} + 1}{\textit{total} + 1} - \frac{\textit{pass}}{\textit{total}}total+1pass+1totalpass

我们会优先选择通过率增加量最大的班级,这样做的正确性在于给同一个班级不断地增加安排的学生数量时,其增加的通过率是单调递减的,即:

pass+2total+2−pass+1total+1<pass+1total+1−passtotal\frac{\textit{pass} + 2}{\textit{total} + 2} - \frac{\textit{pass} + 1}{\textit{total} + 1} < \frac{\textit{pass} + 1}{\textit{total} + 1} - \frac{\textit{pass}}{\textit{total}}total+2pass+2total+1pass+1<total+1pass+1totalpass

因此当以下条件满足时,班级 jjj 比班级 iii 优先级更大:

passi+1totali+1−passitotali<passj+1totalj+1−passjtotalj\frac{\textit{pass}_i + 1}{\textit{total}_i + 1} - \frac{\textit{pass}_i}{\textit{total}_i} < \frac{\textit{pass}_j + 1}{\textit{total}_j + 1} - \frac{\textit{pass}_j}{\textit{total}_j}totali+1passi+1totalipassi<totalj+1passj+1totaljpassj

化简后可得:

(totalj+1)×(totalj)×(totali−passi)<(totali+1)×(totali)×(totalj−passj)(\textit{total}_j + 1) \times (\textit{total}_j) \times (\textit{total}_i - \textit{pass}_i) < (\textit{total}_i + 1) \times (\textit{total}_i) \times (\textit{total}_j - \textit{pass}_j)(totalj+1)×(totalj)×(totalipassi)<(totali+1)×(totali)×(totaljpassj)我们按照上述比较规则将每个班级放入优先队列中,进行 extraStudents\textit{extraStudents}extraStudents次操作。每一次操作,我们取出优先队列的堆顶元素,令其 pass\textit{pass}passtotal\textit{total}total分别加 111,然后再放回优先队列。

最后我们遍历优先队列的每一个班级,计算其平均通过率即可得到答案。

复杂度分析:

  • 时间复杂度: O((n+m)log⁡n)O((n + m)\log n)O((n+m)logn)O(n+mlog⁡n)O(n + m\log n)O(n+mlogn),其中 nnnclasses\textit{classes}classes的长度,mmm 等于 extraStudents\textit{extraStudents}extraStudents。每次从优先队列中取出或者放入元素的时间复杂度为 O(log⁡n)O(\log n)O(logn),共需操作 O(n+m)O(n + m)O(n+m) 次,故总复杂度为 O((n+m)log⁡n)O((n + m)\log n)O((n+m)logn)。堆化写法的时间复杂度为 O(n+mlog⁡n)O(n + m\log n)O(n+mlogn)
  • 空间复杂度: O(n)O(n)O(n)O(1)O(1)O(1)。使用优先队列需要用到 O(n)O(n)O(n) 的空间,但若直接在 classes\textit{classes}classes上原地堆化,则可以做到 O(1)O(1)O(1) 额外空间。
import heapq
class Solution:def maxAverageRatio(self, classes: List[List[int]], extraStudents: int) -> float:def increasing_rate(a, b):return (a+1)/(b+1)-a/blis = []for i in classes:heapq.heappush(lis, (-increasing_rate(i[0], i[1]), i))for i in range(extraStudents):now = heapq.heappop(lis)[1]heapq.heappush(lis, (-increasing_rate(now[0]+1, now[1]+1), [now[0]+1, now[1]+1]))return sum([i[1][0]/i[1][1] for i in lis]) / len(lis)

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/maximum-average-pass-ratio

相关文章:

算法刷题打卡第95天: 最大平均通过率

最大平均通过率 难度&#xff1a;中等 一所学校里有一些班级&#xff0c;每个班级里有一些学生&#xff0c;现在每个班都会进行一场期末考试。给你一个二维数组 classes &#xff0c;其中 classes[i] [passi, totali] &#xff0c;表示你提前知道了第 i 个班级总共有 totali…...

Springboot扩展点系列之终结篇:Bean的生命周期

前言关于Springboot扩展点系列已经输出了13篇文章&#xff0c;分别梳理出了各个扩展点的功能特性、实现方式和工作原理&#xff0c;为什么要花这么多时间来梳理这些内容&#xff1f;根本原因就是这篇文章&#xff1a;Spring bean的生命周期。你了解Spring bean生命周期&#xf…...

OnGUI Color 控件||Unity 3D GUI 简介||OnGUI TextField 控件

Unity 3D Color 控件与 Background Color 控件类似&#xff0c;都是渲染 GUI 颜色的&#xff0c;但是两者不同的是 Color 不但会渲染 GUI 的背景颜色&#xff0c;同时还会影响 GUI.Text 的颜色。具体使用时&#xff0c;要作如下定义&#xff1a;public static var color:Color;…...

【日刻一诗】

日刻一诗 1&#xff09;LeetCode总结&#xff08;线性表&#xff09;_链表类 2&#xff09;LeetCode总结&#xff08;线性表&#xff09;_栈队列类 3&#xff09;LeetCode总结&#xff08;线性表&#xff09;_滑动窗口 4&#xff09;LeetCode总结&#xff08;线性表&#x…...

设计模式 状态机

前言 本文梳理状态机概念&#xff0c;在实操中状态机和状态模式类似&#xff0c;只是被封装起来&#xff0c;可以很方便的实现状态初始化和状态转换。 概念 有限状态机&#xff08;finite-state machine&#xff09;又称有限状态自动机&#xff08;英语&#xff1a;finite-s…...

React源码分析(二)渲染机制

准备工作 为了方便讲解&#xff0c;假设我们有下面这样一段代码&#xff1a; function App(){const [count, setCount] useState(0)useEffect(() > {setCount(1)}, [])const handleClick () > setCount(count > count)return (<div>勇敢牛牛, <sp…...

Object.defineProperty 和 Proxy 的区别

区别:Object.defineProperty是一个用来定义对象的属性或者修改对象现有的属性的函数&#xff0c;&#xff0c;而 Proxy 是一个用来包装普通对象的对象的对象。Object.defineProperty是vue2响应式的原理, Proxy 是vue3响应式的原理1)参数不同Object.defineProperty参数obj: 要定…...

Python基础4——面向对象

目录 1. 认识对象 2. 成员方法 2.1 成员方法的定义语法 3. 构造方法 4. 其他的一些内置方法 4.1 __str__字符串方法 4.2 __lt__小于符号比较方法 4.3 __le__小于等于符号比较方法 4.4 __eq__等号比较方法 5. 封装特性 6. 继承特性 6.1 单继承 6.2 多继承 6.3 pas…...

Hive 核心知识点灵魂 16 问

本文目录 No1. 请谈一下 Hive 的特点No2. Hive 底层与数据库交互原理&#xff1f;No3. Hive 的 HSQL 转换为 MapReduce 的过程&#xff1f;No4. Hive 的两张表关联&#xff0c;使用 MapReduce 怎么实现&#xff1f;No5. 请说明 hive 中 Sort By&#xff0c;Order By&#xff0…...

聊聊探索式测试与敏捷实践

这是鼎叔的第五十二篇原创文章。行业大牛和刚毕业的小白&#xff0c;都可以进来聊聊。欢迎关注本专栏和微信公众号《敏捷测试转型》&#xff0c;大量原创思考文章陆续推出。探索式测试在敏捷测试象限中处于右上角&#xff0c;即面向业务且评价产品&#xff0c;这篇补充一下探索…...

社区宠物诊所管理系统

目录第一章概述 PAGEREF _Toc4474 \h 21.1引言 PAGEREF _Toc29664 \h 31.2开发背景 PAGEREF _Toc3873 \h 3第二章系统总体结构及开发 PAGEREF _Toc19895 \h 32.1系统的总体设计 PAGEREF _Toc6615 \h 32.2开发运行环境 PAGEREF _Toc13054 \h 3第三章数据库设计 PAGEREF _Toc2852…...

Vue项目创建首页发送axios请求

这是个全新的Vue项目,引入了ElementUI 将App.vue里的内容干掉,剩如下 然后下面的三个文件也可以删掉了 在views文件下新建Login.vue组件 到router目录下的index.js 那么现在的流程大概是这样子的 启动 写登陆页面 <template><div><el-form :ref"form"…...

Nginx

NginxNginxNginx可以从事的用途Nginx安装Nginx自带常用命令Nginx启动Nginx停止Nginx重启Nginx配置概要第一部分&#xff1a;全局块第二部分&#xff1a;events 块&#xff1a;第三部分&#xff1a;http块&#xff1a;Nginx Nginx是一个高性能的http和反向代理服务器&#xff0…...

2049. 统计最高分的节点数目

2049. 统计最高分的节点数目题目算法设计&#xff1a;深度优先搜索题目 传送门&#xff1a;https://leetcode.cn/problems/count-nodes-with-the-highest-score/ 算法设计&#xff1a;深度优先搜索 这题的核心是计算分数。 一个节点的分数 左子树节点数 右子树节点数 除自…...

Docker 架构简介

Docker 架构 Docker 包括三个基本概念: 镜像&#xff08;Image&#xff09;&#xff1a;Docker 镜像&#xff08;Image&#xff09;&#xff0c;就相当于是一个 root 文件系统。比如官方镜像 ubuntu:16.04 就包含了完整的一套 Ubuntu16.04 最小系统的 root 文件系统。容器&am…...

玄子Share-BCSP助学手册-JAVA开发

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-b2gPyAnt-1676810001349)(./assets/%E7%8E%84%E5%AD%90Share%E4%B8%89%E7%89%88.jpg)] 玄子Share-BCSP助学手册-JAVA开发 前言&#xff1a; 此文为玄子&#xff0c;复习BCSP一二期后整理的文章&#x…...

利用React实现多个场景下的鼠标跟随框提示框

前言 鼠标跟随框的作用如下图所示&#xff0c;可以在前端页面上&#xff0c;为我们后续的鼠标操作进行提示说明&#xff0c;提升用户的体验。本文将通过多种方式去实现&#xff0c;从而满足不同场景下的需求。 实现原理 实现鼠标跟随框的原理很简单&#xff0c;就是监听鼠标在…...

【安全知识】——如何绕过cdn获取真实ip

作者名&#xff1a;白昼安全主页面链接&#xff1a; 主页传送门创作初心&#xff1a; 以后赚大钱座右铭&#xff1a; 不要让时代的悲哀成为你的悲哀专研方向&#xff1a; web安全&#xff0c;后渗透技术每日鸡汤&#xff1a; 现在的样子是你想要的吗&#xff1f;cdn简单来说就是…...

JavaScript内存泄露和垃圾回收机制

1、是什么&#xff1f;内存泄露&#xff08;Memory leak&#xff09;是在计算机科学中&#xff0c;由于疏忽或错误造成程序未能释放已经不再使用的内存。并非指内存在物理上的消失&#xff0c;而是应用程序分配某段内存后&#xff0c;由于设计错误&#xff0c;导致在释放该段内…...

Kubernetes02:知识图谱

Kubernetes01&#xff1a;知识图谱 MESOS APACHE 分布式资源管理框架 2019-5 Twitter 》 Kubernetes Docker Swarm 2019-07 阿里云宣布 Docker Swarm 剔除 Kubernetes Google 10年容器化基础架构 borg Go语言 Borg 特点 轻量级&#xff1a;消耗资源小 开源 弹性伸缩 负载均…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析

1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具&#xff0c;该工具基于TUN接口实现其功能&#xff0c;利用反向TCP/TLS连接建立一条隐蔽的通信信道&#xff0c;支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式&#xff0c;适应复杂网…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

高频面试之3Zookeeper

高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个&#xff1f;3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制&#xff08;过半机制&#xff0…...

汽车生产虚拟实训中的技能提升与生产优化​

在制造业蓬勃发展的大背景下&#xff0c;虚拟教学实训宛如一颗璀璨的新星&#xff0c;正发挥着不可或缺且日益凸显的关键作用&#xff0c;源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例&#xff0c;汽车生产线上各类…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...