lama-cleaner:基于SOTA AI 模型Stable Diffusion驱动的图像修复工具
介绍
由 SOTA AI 模型提供支持的图像修复工具。从照片中删除任何不需要的物体、缺陷、人物,或擦除并替换(由Stable Diffusion驱动)照片上的任何东西。
特征
1.多种SOTA AI模型
擦除模型:LaMa/LDM/ZITS/MAT/FcF/Manga
擦除和替换模型:稳定扩散/绘制示例
2.后期处理 插件
RemoveBG:删除图像背景
RealESRGAN:超分辨率
GFPGAN:面部恢复
RestoreFormer : 脸部修复
Segment Anything:准确快速的交互式对象分割
快速上手
# In order to use the GPU, install cuda version of pytorch first.
# pip install torch==1.13.1+cu117 torchvision==0.14.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install lama-cleaner
lama-cleaner --model=lama --device=cpu --port=8080
就是这样,Lama Cleaner 现在正在http://localhost:8080上运行
查看lama-cleaner-docs中的所有命令行参数
地址
lama-cleaner
截图
lama-cleaner:基于SOTA AI 模型Stable Diffusion驱动的图像修复工具
相关文章:

lama-cleaner:基于SOTA AI 模型Stable Diffusion驱动的图像修复工具
介绍 由 SOTA AI 模型提供支持的图像修复工具。从照片中删除任何不需要的物体、缺陷、人物,或擦除并替换(由Stable Diffusion驱动)照片上的任何东西。 特征 1.多种SOTA AI模型 擦除模型:LaMa/LDM/ZITS/MAT/FcF/Manga 擦除和替…...

LVS-DR模式以及其中ARP问题
目录 LVS_DR LVS_DR数据包流向分析 LVS-DR中ARP问题 问题一 问题二 解决ARP的两个问题的设置方法 LVS-DR特点 LVS-DR优缺点 优点 缺点 LVS-DR集群构建 1.配置负载调度器 2.部署共享存储 3.配置节点服务器 4.测试 LVS 群集 LVS_DR LVS_DR数据包流向分析 客户端…...
2023-08-15 Untiy进阶 C#知识补充5——C#6主要功能与语法
文章目录 一、概述二、静态导入三、异常筛选器四、nameof 运算符 注意:在此仅提及 Unity 开发中会用到的一些功能和特性,对于不适合在 Unity 中使用的内容会忽略。 一、概述 C#6 的新增功能和语法主要包含: >运算符(C#…...

最新两年工作经验总结
最新两年工作经验总结 前言URP的使用1:如何开启URP1、老项目升级为URP2、创建新项目时选择URP创建 2:URP阴影的设置 PolyBrush的使用(地图编辑插件)制作山峰or低谷边缘柔化雨刷上色制造场景中的物体贴图地形创建容易踩坑的点ProBu…...
MATLAB——线性神经网络预测程序
有导师学习神经网络的分类-鸢尾花种类识别 学习目标: 线性神经网络收敛速度和精度比前一篇博客的感知器神经网络要高, 主要应用在函数逼近,信号预测,模式识别,系统辨识方面 clear all; close all; P[1.1 2.2 3.1 4.1]…...

面试之快速学习STL-迭代适配器
先放一张大图 参考:http://c.biancheng.net/view/7255.html 1. 反向迭代器 例子: std::list<int> values{1,2,3,4,5};auto start_it values.rbegin();const auto end_it values.rend();//start_it end_it std::reverse_iterator<std::lis…...

【Linux】【驱动】杂项设备驱动
【Linux】【驱动】杂项设备驱动 Linux三大设备驱动1. 我们这节课要讲的杂项设备驱动是属于我们这三大设备驱动里面的哪个呢?2.杂项设备除了比字符设备代码简单,还有别的区别吗?3.主设备号和次设备号是什么? 挂载驱动 杂项设备驱动是字符设备驱动的一种࿰…...

【HCIP】10.路由策略
📎13 路由策略与路由控制.pptx 通过修改路由的属性,影响了路由的生成及选路,最终影响了转发流量的路径;控制平面。 ACL IP prefix Filter-Policy Router-Policy 笔记...

【腾讯云Cloud Studio实战训练营】使用Cloud Studio社区版快速构建React完成点餐H5页面还原
陈老老老板🦸 👨💻本文专栏:生活(主要讲一下自己生活相关的内容) 👨💻本文简述:生活就像海洋,只有意志坚强的人,才能到达彼岸。 👨💻上一篇…...

测试开发工程必备技能之一:Mock的使用
1. 背景 在实际产品开发过程中,某个服务或前端依赖一个服务接口,该接口可能依赖多个底层服务或模块,或第三方接口,比如说服务 A 依赖服务B,服务B又依赖服务 C 这种依赖的问题会导致原本的需求目的是要验证服务A&…...

Qbytearray:从十六进制字符串转字节一些注意事项
1、从十六进制字符串转字节后,按字节使用时 QByteArray data QByteArray::fromHex("cc94");printf("%x %x\n",data.at(0),data.at(0)&0xff);//若超过127,会不一样printf("%d %d\n",data.at(0),data.at(0)&0xff);…...

【Docker】Docker的使用案例以及未来发展、Docker Hub 服务、环境安全的详细讲解
前言 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux或Windows操作系统的机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。 📕作者简介:热…...
Redis有哪几种内存淘汰策略?
推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…...

操作系统练习:在Linux上创建进程,及查看进程状态
说明 进程在执行过程中可以创建多个新的进程。创建进程称为“父进程”,新的进程称为“子进程”。每个新的进程可以再创建其他进程,从而形成进程树。 每个进程都有一个唯一的进程标识符(process identifier,pid)。在L…...

Java虚拟机(JVM):垃圾收集算法
目录 一、分代收集理论 二、标记-清除算法 三、标记-复制算法 四、标记-整理算法 一、分代收集理论 分代收集理论建立在两个分代假说之上: 1、弱分代假说:绝大多数对象都是朝生夕灭的。 2、强分代假说:熬过越多次垃圾收集过程的对象就…...
【爬虫】Requests库的使用
这个库比我们上次说的 urllib 可是要牛逼一丢丢的。通过它我们可以用更少的代码,模拟浏览器操作。 不多说,直接上手代码。 requests 常见用法 mport requests# get请求网站 r requests.get(https://www.baidu.com/) # 获取服务器响应文本内容 r.text …...

了解生成对抗网络 (GAN)
一、介绍 Yann LeCun将其描述为“过去10年来机器学习中最有趣的想法”。当然,来自深度学习领域如此杰出的研究人员的赞美总是对我们谈论的主题的一个很好的广告!事实上,生成对抗网络(简称GAN)自2014年由Ian J. Goodfel…...

opencv-人脸关键点定位
#导入工具包 from collections import OrderedDict import numpy as np import argparse import dlib import cv2#https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/ #http://dlib.net/files/# 参数 ap argparse.ArgumentParser() ap.add_argument("-p&quo…...
言语理解与表达 郭熙(一)
40题 35min 逻辑填空 (20题) 题型:实词填空;成语填空;混搭填空 解题思路 词义辨析:词义侧重;固定搭配;程度较重;感情色彩 语境分析: 关联关系ÿ…...

【stable-diffusion使用扩展+插件和模型资源(上】
文章目录 前言一、插件推荐1.qrcode-monster2.sd-webui-openpose-editor3.sd-webui-depth-lib4.roop(换脸插件)5.sd-webui-qrcode-toolkit(艺术二维码)5.光源控制6.二次元转真人7.动态视频转场(loopback-waveÿ…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
React Native 导航系统实战(React Navigation)
导航系统实战(React Navigation) React Navigation 是 React Native 应用中最常用的导航库之一,它提供了多种导航模式,如堆栈导航(Stack Navigator)、标签导航(Tab Navigator)和抽屉…...
DockerHub与私有镜像仓库在容器化中的应用与管理
哈喽,大家好,我是左手python! Docker Hub的应用与管理 Docker Hub的基本概念与使用方法 Docker Hub是Docker官方提供的一个公共镜像仓库,用户可以在其中找到各种操作系统、软件和应用的镜像。开发者可以通过Docker Hub轻松获取所…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
【解密LSTM、GRU如何解决传统RNN梯度消失问题】
解密LSTM与GRU:如何让RNN变得更聪明? 在深度学习的世界里,循环神经网络(RNN)以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而,传统RNN存在的一个严重问题——梯度消失&#…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计
随着大语言模型(LLM)参数规模的增长,推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长,而KV缓存的内存消耗可能高达数十GB(例如Llama2-7B处理100K token时需50GB内存&a…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...