当前位置: 首页 > news >正文

【LLM数据篇】预训练数据集+指令生成sft数据集

note

  • 在《Aligning Large Language Models with Human: A Survey》综述中对LLM数据分类为典型的人工标注数据、self-instruct数据集等
  • 优秀的开源sft数据集:alpaca_data、belle、千言数据集、firefly、moss-003-sft-data多轮对话数据集等

文章目录

  • note
  • 构造指令实例的3种方式
  • sft:Aligning Large Language Models with Human: A Survey
  • Alpaca
    • 1. self-instruct流程
    • 2. alpaca中的实例生成
  • BELLE
    • 1. 个性化角色对话
    • 2. 中文指令数据集
  • 千言数据集
  • Firefly
  • 文本摘要生成数据集
  • 字节对话推荐数据集
  • 根据文档生成qa数据
  • 预训练数据集
  • 数据的评估
  • Reference

构造指令实例的3种方式

在这里插入图片描述
图源自人大的LLM综述《A Survey of Large Language Models》

  • 格式化任务数据集
  • 格式化日常对话数据集
  • 格式化合成数据集:self-instruct就是这种方式, 初始只需100多个实例作为任务池

sft:Aligning Large Language Models with Human: A Survey

这篇工作【地址:arxiv.org/abs/2307.12966】对LLM的sft数据进行分类:

  • 人工标注数据
  • self-Instruct

在这里插入图片描述

Alpaca

链接:https://github.com/tatsu-lab/stanford_alpaca
[stanford_alpaca] 使用 self instruction 的方式采集了 52k 条指令训练数据集。output是text-davinci-003生成的指令答案。

1. self-instruct流程

在这里插入图片描述

  • 四部曲:指令生成;分类任务识别;实例生成;过滤和后处理。
  • 为了实证评估SELF-INSTRUCT,在GPT3(Brown等人,2020)上运行该框架,在这个模型上的SELF-INSTRUCT迭代过程产出了大约52K条指令,以及大约82K个实例输入和目标输出对。结果数据提供了多种多样的创造性任务,其中50%以上的任务与种子指令的重合度低于0.3 ROUGE-L(§4.2)。可以利用生成的指令数据微调其他大模型。

2. alpaca中的实例生成

  • alpaca简化了流程,没有分为分类/非分类任务的判断
  • 中文例子如下:
你被要求提供10个多样化的任务指令。这些任务指令将被提供给GPT模型,我们将评估GPT模型完成指令的能力。
以下是你提供指令需要满足的要求:
1.尽量不要在每个指令中重复动词,要最大化指令的多样性。
2.使用指令的语气也应该多样化。例如,将问题与祈使句结合起来。
3.指令类型应该是多样化的,包括各种类型的任务,类别种类例如:brainstorming,open QA,closed QA,rewrite,extract,generation,classification,chat,summarization。
4.GPT语言模型应该能够完成这些指令。例如,不要要求助手创建任何视觉或音频输出。例如,不要要求助手在下午5点叫醒你或设置提醒,因为它无法执行任何操作。例如,指令不应该和音频、视频、图片、链接相关,因为GPT模型无法执行这个操作。
5.指令用中文书写,指令应该是12个句子,允许使用祈使句或问句。
6.你应该给指令生成适当的输入,输入字段应包含为指令提供的具体示例,它应该涉及现实数据,不应包含简单的占位符。输入应提供充实的内容,使指令具有挑战性。
7.并非所有指令都需要输入。例如,当指令询问一些常识信息,比如“世界上最高的山峰是什么”,不需要提供具体的上下文。在这种情况下,我们只需在输入字段中放置“<无输入>”。当输入需要提供一些文本素材(例如文章,文章链接)时,就在输入部分直接提供一些样例。当输入需要提供音频、图片、视频或者链接时,则不是满足要求的指令。
8.输出应该是针对指令和输入的恰当回答。 下面是10个任务指令的列表:
###
1. 指令: 在面试中如何回答这个问题?
1. 输入:当你在车里独处时,你会想些什么?
1. 输出:如果是在晚上,我通常会考虑我今天所取得的进步,如果是在早上,我会思考如何做到最好。我也会尝试练习感恩和活在当下的状态,以避免分心驾驶。
###
2. 指令: 按人口对这些国家进行排名。
2. 输入:巴西,中国,美国,日本,加拿大,澳大利亚
2. 输出:中国,美国,巴西,日本,加拿大,澳大利亚

如使用chatgpt 3.5生成的response为:

3. 指令: 给出一个关于全球变暖的简短概述。
3. 输入: <无输入>
3. 输出: 全球变暖是指地球上气候系统的长期变化,包括气温、气压、降水和风等因素。虽然自然因素对气候的影响很大,但人类活动也在加剧全球变暖,导致气候的不稳定和极端天气事件的增多。4. 指令: 给出一个有关健康的小贴士。
4. 输入: 我最近感到很疲倦,有什么建议可以提高我的能量?
4. 输出: 确保充足的睡眠是提高能量的重要因素。此外,保持健康的饮食和适当的锻炼也可以帮助提高能量水平。要尽可能避免糖和咖啡因,因为它们可能会导致疲劳。5. 指令: 给出一个有关历史的事件描述。
5. 输入:请描述马丁·路德·金在美国民权运动中的作用。
5. 输出:马丁·路德·金是美国非裔民权运动的领袖之一,他通过非暴力抗议、演讲和写作等手段,推动了民权运动的发展,并取得了历史性的胜利,如《民权法案》和《选举权法案》的通过。6. 指令: 给出一个有关文学的问题。
6. 输入:请问《麦田里的守望者》是谁写的?
6. 输出:《麦田里的守望者》是美国作家J·D·塞林格所写的小说,其讲述了一个年轻人的成长历程,被誉为20世纪最重要的小说之一。7. 指令: 给出一个关于科技的趋势。
7. 输入:技术未来发展的趋势是什么?
7. 输出:未来,人工智能、物联网、区块链和量子计算等技术将继续发展,这些技术将改变我们的生活方式、工作方式和商业模式。此外,随着数据的不断增长,数据分析和数据科学也将成为越来越重要的技能。8. 指令: 给出一个关于金融的问题。
8. 输入:请解释一下什么是债券。
8. 输出:债券是一种固定收益证券,它代表了借款人对债权人的债务。债券通常由政府、公司或其他实体发行,债券持有人可以获得固定的利息收益,并在债券到期时获得本金回收。9. 指令: 给出一个地理问题。
9. 输入:请问世界上最高的山峰是什么?
9. 输出:珠穆朗玛峰是地球上海拔最高的山峰,位于中国和尼泊尔之间的喜马拉雅山脉中,海拔约为8,848米。10. 指令: 给出一个关于医学的问题。
10. 输入:请解释一下心血管疾病是什么。
10. 输出:心血管疾病是一类疾病,包括冠心病、高血压、心脏衰竭、心律失常和动脉硬化等。这些疾病影响心血管系统的功能,可能导致心脏病发作、中风和其他严重的健康问题。预防心血管疾病的关键在于采取健康的生活方式,如均衡的饮食、适当的运动和戒烟等。

BELLE

项目地址:https://github.com/LianjiaTech/BELLE
论文地址:https://arxiv.org/pdf/2304.07854.pdf

BELLE 开放了好几种规模的数据集,[100万]、[200万]、[350万] 等。
ex:BELLE中的指令数据集
https://huggingface.co/datasets/BelleGroup/train_1M_CN

1. 个性化角色对话

数据集名称:BelleGroup/generated_chat_0.4M
https://huggingface.co/datasets/BelleGroup/generated_chat_0.4M

也是chatgpt生成的:
字段类型:

instruction: 指令
input: 输入(本数据集均为空)
output: 输出

数据样例:

{"instruction": "于以下角色信息完成一段对话\nAlice是一个年轻的律师,她正在为一个涉及濒危物种保护的案件做准备。Bob是一位当地的居民,他所在的社区经常受到该濒危物种的干扰。\n","input": "","output": "\nAlice: 你好Bob,我是濒危物种保护案的律师,很高兴见到你。我们前几天发给你的文件你看到了吗?\nBob: 看到了,你们说要禁止我们在该物种的常住地采集蘑菇,这很不公平。\nAlice: 保护濒危物种对整个生态系统都很重要,如果我们的举动损害了这个物种的生存,那么整个生态系统都将遭受损失。\nBob: 我理解您的立场,但是我们一直以来都依靠这个物种来维持我们的经济生活,现在我们要怎么办?\nAlice: 我理解这对当地社区的影响,但是现在我们必须找到一种既能保护这个物种,也同时使您们的经济生活不受影响的解决方案。你有任何想法吗?我们可以一起来想办法。\n"
}

2. 中文指令数据集

{"instruction": "将以下三个句子组合成一个有意义的段落。\n狗是人类最好的朋友。它们非常聪明,可以进行各种活动。如果你喜欢散步,狗可以成为你一起散步的伙伴。","input": "","output": "狗是人类最好的朋友,它们非常聪明,可以进行各种活动。如果你喜欢散步,狗可以成为你一起散步的伙伴。出门散步是一种良好的锻炼方式,而有狗的陪伴会让散步变得更有趣,并且有狗在身边也能给你带来安全感。所以,拥有一只狗作为你的伙伴,可以帮助你变得更加积极主动和健康。"
}

千言数据集

https://www.luge.ai/#/
数据集挺多,涵盖文本生成、信息抽取、知识图谱等数据集,如文本生成中的摘要数据集:
在这里插入图片描述

Firefly

链接:https://huggingface.co/datasets/YeungNLP/firefly-train-1.1M
收集了23个常见的中文数据集,有以下的任务,数据量为115万:
在这里插入图片描述
训练数据集 绝大数sample的长度都小于600:
在这里插入图片描述

数据的字段:

{"kind": "ClassicalChinese", "input": "将下面句子翻译成现代文:\n石中央又生一树,高百余尺,条干偃阴为五色,翠叶如盘,花径尺余,色深碧,蕊深红,异香成烟,著物霏霏。","target": "大石的中央长着一棵树,一百多尺高,枝干是彩色的,树叶有盘子那样大,花的直径有一尺宽,花瓣深蓝色,花中飘出奇异的香气笼罩着周围,如烟似雾。"
}

对于每个任务,由人工书写若干种指令模板。

下图是firefly-bloom-7b1的多轮对话的生成效果:
该数据集用于训练项目:https://github.com/yangjianxin1/Firefly
在这里插入图片描述
firefly项目还用到如下的指令数据集:

数据集介绍
firefly-train-1.1M我们收集了23种常见的中文NLP任务的数据,并且构造了许多与中华文化相关的数据,如对联、作诗、文言文翻译、散文、金庸小说等。对于每个任务,由人工书写若干种指令模板,保证数据的高质量与丰富度,数据量为115万
moss-003-sft-data由复旦大学MOSS团队开源的中英文多轮对话数据,包含100万+数据
ultrachat由清华大学开源的英文多轮对话数据,包含140万+数据
WizardLM_evol_instruct_V2_143k由WizardLM项目开源的英文指令微调数据集,通过Evol-Instruct方法让指令进化,加强指令的复杂度,以提升模型对复杂指令的遵循能力。包含143k条数据。
school_math_0.25M由BELLE项目组开源的数学运算指令数据,包含25万条数据。

数据样例为:

{"conversation_id":44,"category":"Brainstorming","conversation":[{"human":"怎么能够有效地提升个人能力?","assistant":"提升个人能力可以通过以下几个方面实现:\n\n1. 学习新知识和技能:阅读相关书籍、参加课程和工作坊、观看教育视频等学习方式,可以帮助你掌握新的知识和技能,从而提升个人能力。\n\n2. 持续练习和实践:不断地练习和实践所学的知识和技能,可以帮助你更好地掌握和应用这些技能,提高你的表现和效率。\n\n3. 寻求反馈和改进:寻求他人的反馈和建议可以帮助你发现自己的不足之处,进一步完善和改进自己的能力。\n\n4. 建立良好的工作和生活习惯:建立良好的工作和生活习惯,如合理安排时间、注意健康、保持积极态度等,可以提高你的工作效率和生活品质,从而提升个人能力。\n\n5. 社交和交流:与他人交流和合作,可以帮助你更好地了解他人的观点和经验,从而提升自己的能力和见识。"},{"human":"对于初学者来说,如何快速掌握编程技能?","assistant":"以下是几个建议,可以帮助初学者快速掌握编程技能:\n\n1. 学习基础知识:建议先学习编程语言的基础知识和语法,例如变量、数据类型、控制结构、函数等。可以通过在线课程、编程书籍、视频教程等方式学习。\n\n2. 实践编程:进行实际的编程练习是非常重要的,可以通过参加编程挑战、编写小项目等方式来进行实践。\n\n3. 寻求反馈:可以寻求他人的反馈和建议,例如在线编程社区、编程导师等,他们可以帮助你发现问题并及时纠正。\n\n4. 阅读优秀代码:阅读和分析优秀的代码可以帮助你学习其他程序员的编程思路和技巧,从而提高自己的编程能力。\n\n5. 不断学习和更新:编程技术和工具在不断更新和发展,因此需要不断学习新的知识和技能,例如学习新的编程语言、框架、工具等,以跟上技术的发展和变化。\n\n总之,学习编程需要耐心和坚持,并且需要不断地实践和学习。通过以上建议,可以帮助初学者快速掌握编程技能。"},{"human":"除了参加编程挑战和阅读代码,还有哪些方式可以提升自己的编程能力呢?","assistant":"除了参加编程挑战和阅读代码,还有以下几种方式可以提升自己的编程能力:\n\n1. 参与开源项目:加入一个开源项目,可以让你了解到实际的软件开发流程和团队合作方式,并且可以与其他开发人员合作,学习和分享编程技巧和经验。\n\n2. 进行代码重构:对已经编写的代码进行重构,可以帮助你了解更好的编程实践和设计模式,从而提高代码的可读性和可维护性。\n\n3. 练习算法和数据结构:算法和数据结构是编程中的重要基础,练习算法和数据结构可以帮助你了解不同的数据结构和算法,从而更好地解决实际问题。\n\n4. 学习软件工程和架构:学习软件工程和架构的知识,可以帮助你了解如何设计和构建可靠、可扩展和可维护的软件系统。\n\n5. 参加编程社区和论坛:参加编程社区和论坛可以让你与其他开发人员分享和讨论编程经验和技巧,了解最新的技术趋势和解决方案。\n\n总之,提升编程能力需要不断地学习和实践,并与其他开发人员和编程专家进行交流和合作,以获取更多的经验和知识。"},{"human":"你有没有推荐的编程挑战网站?","assistant":"当然,以下是一些值得推荐的编程挑战网站:\n\n1. HackerRank:HackerRank 是一个全球领先的技术招聘平台,提供数百种编程挑战和比赛,包括算法、数据结构、数学、SQL、AI 等多个技术领域。\n\n2. LeetCode:LeetCode 是一个在线编程学习和实践平台,提供数千道编程题目,主要涵盖算法和数据结构。\n\n3. Codeforces:Codeforces 是一个全球知名的编程竞赛网站,提供数百个比赛和练习题目,主要涵盖算法和数据结构。\n\n4. Codewars:Codewars 是一个在线编程学习和实践平台,提供数千道编程题目,主要涵盖算法、数据结构、面向对象编程等多个技术领域。\n\n5. Project Euler:Project Euler 是一个非营利性的在线编程挑战平台,提供一系列数学和计算机科学问题,需要用编程语言进行解答。\n\n以上这些编程挑战网站可以帮助你提高编程能力,并且可以与其他编程爱好者进行交流和竞争。"},{"human":"在学习编程的过程中,如何避免陷入困境和放弃呢?","assistant":"学习编程是一个需要长期坚持和不断学习的过程,以下是一些避免陷入困境和放弃的方法:\n\n1. 制定合理的学习计划:制定合理的学习计划,包括学习时间、学习内容、目标等,可以帮助你更好地管理时间和精力,避免学习过程中的松懈和分心。\n\n2. 寻找合适的学习资源:选择适合自己的学习资源,例如在线课程、编程书籍、视频教程等,可以让你更好地了解和掌握编程知识和技能。\n\n3. 寻求帮助和支持:在学习过程中,遇到问题和困难是很正常的,可以寻求他人的帮助和支持,例如参加编程社区、找到编程导师等。\n\n4. 进行实践和项目:实践和项目是学习编程的重要组成部分,可以帮助你更好地了解和掌握编程技能,同时也可以提高学习的兴趣和动力。\n\n5. 坚持并保持兴趣:坚持学习和保持兴趣是学习编程的关键。可以通过参加编程社区、参加编程竞赛、与其他编程爱好者交流等方式来保持兴趣和动力。\n\n总之,学习编程需要耐心和坚持,并需要不断学习和实践。通过以上方法可以帮助你避免陷入困境和放弃。"}],
}

文本摘要生成数据集

  • LCSTS:http://icrc.hitsz.edu.cn/Article/show/139.html
  • http://tcci.ccf.org.cn/conference/2017/taskdata.php
  • 参考:https://www.zhihu.com/question/306887936
  • 汇总:https://blog.csdn.net/PolarisRisingWar/article/details/122987556

字节对话推荐数据集

论文地址:https://arxiv.org/pdf/2306.08219.pdf
代码链接:https://github.com/hyllll/VCRS
SIGIR 2023 | 发布业内首个语音对话推荐数据集!火山语音团队实力助推VCRS发展

根据文档生成qa数据

https://github.com/threeColorFr/LLMforDialogDataGenerate
transGPT项目就用的这个方法;其实就是根据读入文档后加prompt给模型直接输出qa数据。

预训练数据集

在这里插入图片描述

数据的评估

让gpt生成数据的同时,还能利用gpt对数据进行评估,套娃操作。
在这里插入图片描述

Reference

[1] 大模型开源SFT训练数据整理
[2] 大模型研发核心:数据工程、自动化评估及与知识图谱的结合
[3] https://github.com/yangjianxin1/Firefly
[4] A Survey of Large Language Models
[5] Aligning Large Language Models with Human: A Survey【arxiv.org/abs/2307.12966】
[6] 让ChatGPT生成训练ChatGPT的训练数据
[7] ChatGLM多轮对话微调-多轮对话训练数据的自动生成(标注)

相关文章:

【LLM数据篇】预训练数据集+指令生成sft数据集

note 在《Aligning Large Language Models with Human: A Survey》综述中对LLM数据分类为典型的人工标注数据、self-instruct数据集等优秀的开源sft数据集&#xff1a;alpaca_data、belle、千言数据集、firefly、moss-003-sft-data多轮对话数据集等 文章目录 note构造指令实例…...

WebDAV之π-Disk派盘 + 一羽记帐

一羽记帐是一款真正让你体验3S极速记账的轻量级APP。针对个人记账,没有花哨冗余的功能。界面美丽、无广告、极速启动、功能全面。一羽记帐功能涵括广,基本可以满足90%人的记账需求。完全无侵入、百分百无广告,无需担心数据安全,所有的操作都不经过任何第三方。 π-Disk派盘…...

ChatGPT:记一次超复杂的KVM桌面系统连接问答记录

​ KVM切换器可以使多台电脑共用键盘&#xff0c;显示器&#xff0c;鼠标&#xff0c;当电脑很多&#xff0c;显示器也是分为主从&#xff0c;需要共用键盘鼠标和音响设备&#xff0c;而买KVM切换器只有2个通道4进2出不满足需求时&#xff0c;就要组合多个KVM使用&#xff0c;大…...

python-docx把dataframe表格添加到word文件中

python-docx把dataframe表格添加到word文件中思路较为简单&#xff1a; 先把dataframe格式转变为table新建一个段落&#xff1a;document.add_paragraph()把table添加到这个段落下方 效果图 示例代码 from docx import Document, oxml import pandas as pd import numpy as …...

Web AP—BOM 浏览器对象模型

代码下载 BOM BOM&#xff08;Browser Object Model&#xff09;即浏览器对象模型&#xff0c;它提供了独立于内容而与浏览器窗口进行交互的对象&#xff0c;其核心对象是 window。 BOM 由一系列相关的对象构成&#xff0c;并且每个对象都提供了很多方法与属性。 BOM 缺乏标…...

Flink分流,合流,状态,checkpoint和精准一次笔记

第8章 分流 1.使用侧输出流 2.合流 2.1 union &#xff1a;使用 ProcessFunction 处理合流后的数据 2.2 Connect &#xff1a; 两条流的格式可以不一样&#xff0c; map操作使用CoMapFunction&#xff0c;process 传入&#xff1a;CoProcessFunction 2.2 BroadcastConnectedSt…...

c# 实现sql查询DataTable数据集 对接SqlSugar ORM

有时候对于已经查询到的数据集&#xff0c;想要进行二次筛选或者查询&#xff0c;还得再查一遍数据库 或者其他的一些逻辑处理不太方便&#xff0c;就想着为什么不能直接使用sql来查询DataTable呢&#xff1f; 搜索全网没找到可用方案&#xff0c;所以自己实现了一个。 主要…...

记一次布尔盲注漏洞的挖掘与分析

在上篇文章记一次由于整型参数错误导致的任意文件上传的漏洞成因的分析过程中&#xff0c;发现menu_id貌似是存在注入的。 public function upload() {$menu_id $this->post(menu_id);if ($id) {$where "id {$id}";if ($menu_id) {$where . " and menu_id…...

C++11 新特性 ---- noexcept

1. 异常 异常通常用于处理逻辑上可能发生的错误 在C98中&#xff0c;提供了一套完善的异常处理机制&#xff0c;直接在程序中将各种类型的异常抛出&#xff0c;从而强制终止程序的运行。 1.1 基本语法 当函数抛出异常时&#xff0c;程序会停止执行&#xff0c;并显示异常信息…...

《Linux运维总结:Centos7.6之OpenSSH7.4p1升级版本至9.4p1》

Centos通过yum升级OpenSSH 在官方支持更新的CentOS版本&#xff0c;如果出现漏洞&#xff0c;都会通过更新版本来修复漏洞。这时候直接使用yum update就可以升级版本。 yum -y update openssh 但是&#xff0c;CentOS更新需要有一段时间&#xff0c;不能在漏洞刚出来的时候就有…...

七夕节日表白:七大网页风格与其适用人群

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

通达信指标公式16:使用BARSLAST函数写一个指标回测的思路

★★★★★博文原创不易&#xff0c;我的博文不需要打赏&#xff0c;也不需要知识付费&#xff0c;可以白嫖学习小技巧&#xff0c;喜欢的老铁可以多多帮忙点赞&#xff0c;小红牛在此表示感谢&#xff0c;就是对作者的最大支持。愿与诸君共勉&#xff0c;悟道于股市★★★★★…...

Jenkins自动化部署Vue项目

1、新建item&#xff0c;选择 Freestyle project 2、源码管理选择git&#xff0c;输入git仓库地址和授权账号&#xff0c;并指明要部署的分支 3、构建选择 Execute shell&#xff0c;输入vue项目打包命令 命令示例&#xff1a; source /etc/profile node -v npm config set re…...

Android JNI打印logcat日志

在 JNI 中打印日志可以使用 __android_log_print 函数来实现。该函数是 Android NDK 提供的一个用于在本地代码中输出日志消息到 logcat 的方法。 要在 JNI 中打印日志&#xff0c;请按照以下步骤进行操作&#xff1a; 在你的 JNI C/C 代码中包含 <android/log.h> 头文件…...

第28次CCF计算机软件能力认证(测试)

测试300分要是考试的时候也能这么发挥就好 第一题&#xff1a;现值计算 解题思路&#xff1a;直接模拟 n , m input().split() n int(n);m float(m) l list(map(int , input().split())) res 0 for i in range(0 , n 1):res pow(1 m , -i) * l[i] print(res) 第二题…...

九耶丨阁瑞钛伦特-Java高频面试题-请谈谈 ReadWriteLock 和 StampedLock

ReadWriteLock包括两种子锁 &#xff08;1&#xff09;ReadWriteLock ReadWriteLock 可以实现多个读锁同时进行&#xff0c;但是读与写和写于写互斥&#xff0c;只能有一个写锁线程在进行。 &#xff08;2&#xff09;StampedLock StampedLock是Jdk在1.8提供的一种读写锁&a…...

【Linux操作系统】深入探索Linux系统编程中的信号集操作函数

在Linux系统编程中&#xff0c;信号集操作函数是非常重要的工具&#xff0c;它们允许我们对信号进行管理和控制。本篇博客将详细介绍Linux系统编程中的信号集操作函数&#xff0c;包括信号集的创建、添加和删除信号&#xff0c;以及对信号集进行操作的常用函数。通过深入了解这…...

[C初阶笔记]P2

Git 1、Git是Linus为了帮助管理Linux内核开发 而开发的一个开放源码的分布式版本控制软件。 2、Git和TortoiseGit的作用。 Git中有各种命令行操作&#xff0c;来维护代码&#xff0c;可以将代码推送到代码托管平台。 TortoiseGit是将Git中各自命令行操作转化为图形化操作。 …...

C++并发编程学习01——hello concurrent world

经典用例 #include <iostream> #include <thread>void hello() {std::cout << "hello concurrent world" << std::endl; }int main() {std::thread t(hello);t.join(); }编译 g -g test.cpp -o out -lpthreadgdb调试 (gdb) r Starting pr…...

大数据扫盲(2): 数据分析BI与ETL的紧密关系——ETL是成功BI的先决条件

着业务的发展每个企业都将产生越来越多的数据&#xff0c;然后这些数据本身并不能直接带来洞察力并产生业务价值。为了释放数据的潜力&#xff0c;数据分析BI&#xff08;商业智能&#xff09;成为了现代企业不可或缺的一部分。然而&#xff0c;在数据分析的背后&#xff0c;有…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)

服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

重启Eureka集群中的节点,对已经注册的服务有什么影响

先看答案&#xff0c;如果正确地操作&#xff0c;重启Eureka集群中的节点&#xff0c;对已经注册的服务影响非常小&#xff0c;甚至可以做到无感知。 但如果操作不当&#xff0c;可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

Scrapy-Redis分布式爬虫架构的可扩展性与容错性增强:基于微服务与容器化的解决方案

在大数据时代&#xff0c;海量数据的采集与处理成为企业和研究机构获取信息的关键环节。Scrapy-Redis作为一种经典的分布式爬虫架构&#xff0c;在处理大规模数据抓取任务时展现出强大的能力。然而&#xff0c;随着业务规模的不断扩大和数据抓取需求的日益复杂&#xff0c;传统…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

​​企业大模型服务合规指南:深度解析备案与登记制度​​

伴随AI技术的爆炸式发展&#xff0c;尤其是大模型&#xff08;LLM&#xff09;在各行各业的深度应用和整合&#xff0c;企业利用AI技术提升效率、创新服务的步伐不断加快。无论是像DeepSeek这样的前沿技术提供者&#xff0c;还是积极拥抱AI转型的传统企业&#xff0c;在面向公众…...