当前位置: 首页 > news >正文

基于ACF,AMDF算法的语音编码matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

..........................................................................
plotFlag        = 0; %绘图标识位
istrain         = 0;
%1.预处理,滤波
%1.预处理,滤波%2.预加重 
%2.预加重 %3.清、浊音判决的分析及量化
%低带能量:通过一个截止频率为900Hz 阻带为10dB的低通滤波器
Wp   = 900/4000;
[b,a]= cheby2(6,10,Wp,'low');
yLF  = filter(b,a,yPre);
plot3;%成帧
[yFrame,nF]    = func_enFrame(yLF); %短时能量来区分清/浊音
VoiceSoundFlag = func_short_energy(yFrame,nF);%二阶逆滤波(白化滤波)
yFrame         = inverseFilter(yFrame,nF); %获得基音周期(AMDF)
pitchT         = func_GetPitch(yFrame,VoiceSoundFlag,nF); %计算增益(RMS)
RMS            = func_RMS(yFrame,VoiceSoundFlag,pitchT,nF);%LPC预测阶数
[Vlpc,Vlsf]    = func_LPC_Order(yFrame,nF);%矢量量化采用王炳锡书5.8章红圈的方法,并组帧
%训练,得到码本,这里需要大量的语音库,这里仅仅提供算法流程,训练库使用少量样本
if istrain == 1tops; load Train\code_save.mat 
elseload Train\code_save.mat 
endfigure;
K1 = 1;
K2 = 2;
plot(lsf{1}(K1,:), lsf{1}(K2,:), 'xr');
hold on;
plot(code{1}(K1,:),code{1}(K2,:), 'vk');
hold on;
plot(lsf{2}(K1,:), lsf{2}(K2,:),  'xb');
hold on;
plot(code{2}(K1,:),code{2}(K2,:), '+k');
hold on;xlabel('2th Dimension');
ylabel('6th Dimension');
legend('Speaker 1', 'Codebook 1', 'Speaker 2', 'Codebook 2');
title('2D plot of accoustic vectors');%VQ发送
Frame = func_vq_trans(Vlsf,pitchT,RMS,VoiceSoundFlag,nF,code);%计算压缩对比
Rate = func_size_cal(yOri,Frame);%接收,矢量解码器
[Vlsf3,VQ_decode,lsf_code,VoiceSoundFlag3,RMS3,pitchT3] = func_vq_rec(Frame,nF,code);%解码
yCom = func_decode(Vlsf3,VoiceSoundFlag3,pitchT3,RMS3,nF);%去加重
b    = 1;
a    = [1 -0.9375];
yCom = filter(b,a,yCom);
sound(yCom,Fs); figure;
subplot(311);
plot(yOri);subplot(312);
plot(pitchT);subplot(313);
plot(yCom);
03_006m

4.算法理论概述

       语音编码是一种将连续的语音信号转换为数字数据的过程,以便在数字通信和存储应用中使用。基于ACF和AMDF的编码算法是一种经典的方法,它在语音信号处理领域得到了广泛应用。

基于ACF和AMDF的语音编码过程包括以下步骤:

预处理:对原始语音信号进行预加重、分帧、窗函数等处理,以提取有用的特征。
计算ACF和AMDF:计算每一帧的ACF和AMDF函数,以便估计基频的候选周期。
基频估计:通过在AMDF函数中寻找最小值,确定基频的候选周期。
量化:将基频的候选周期量化为离散值,以便编码和传输。
编码:使用合适的编码方法(如霍夫曼编码)对量化后的数据进行编码,以减小数据的传输带宽。

基于ACF和AMDF的语音编码方法在以下领域得到应用:
电话通信:在语音通话中,使用这些方法进行语音信号的压缩和传输。
语音存储:将语音信号转换为数字数据,以便在设备中进行存储。
语音识别:用于基频估计,有助于识别语音中的音素和音节。
语音合成:用于合成自然的语音声音。


       基于ACF和AMDF的语音编码方法利用了自相关性和平均差分来估计语音信号中的基频信息。这些方法在语音处理中有着重要的应用,为语音通信、存储和分析提供了有效的解决方案。

5.算法完整程序工程

OOOOO

OOO

O

相关文章:

基于ACF,AMDF算法的语音编码matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .......................................................................... plotFlag …...

python 基础篇 day 1 初识变量和数据类型

文章目录 变量变量作用——用于存储和表示数据。变量命名规则命名法大驼峰小驼峰下划体n j i a x 通常作为临时变量使用 建议 变量种类全局变量(Global Variables)局部变量(Local Variables)静态变量(Static Variables…...

Window下部署使用Stable Diffusion AI开源项目绘图

Window下部署使用Stable Diffusion AI开源项目绘图 前言前提条件相关介绍Stable Diffusion AI绘图下载项目环境要求环境下载运行项目打开网址,即可体验文字生成图像(txt2img)庐山瀑布 参考 本文里面的风景图,均由Stable Diffusion…...

【MySQL】好好学习一下InnoDB中的页

文章目录 一. 前言二. 从宏观层面看页三. 页的基本内容3.1 页的数据结构3.2 用户空间内的数据行结构3.3 页目录 四. 问题集4.1 索引 和 数据页 有什么区别4.2 页的大小是什么决定的4.3 页的大小对哪些情况有影响4.4 一般情况下说的链表有哪几个4.5 如果页的空间满了怎么办4.6 如…...

git开发常用命令

版本回退 soft:git reset --soft HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到暂存区 mixed(默认):git reset HEAD^ 将版本库回退一个版本,且这次提交的所有文件都移动到工作区,会…...

WEB APIs day5

一、window对象 BOM属于window对象 1.BOM(浏览器对象模型) bom里面包含着dom,只不过bom我们平时用得比较少,我们经常使用的是dom操作,因为我们页面中的这些标签都是在dom中取的,所以我们操作dom多一点。 window对象…...

html动态爱心代码【一】(附源码)

前言 七夕马上就要到了,为了帮助大家高效表白,下面再给大家带来了实用的HTML浪漫表白代码(附源码)背景音乐,可用于520,情人节,生日,表白等场景,可直接使用。 效果演示 文案修改 var loverNam…...

【仿写tomcat】六、解析xml文件配置端口、线程池核心参数

线程池改造 上一篇文章中我们用了Excutors创建了线程,这里我们将它改造成包含所有线程池核心参数的形式。 package com.tomcatServer.http;import java.util.concurrent.*;/*** 线程池跑龙套** author ez4sterben* date 2023/08/05*/ public class ThreadPool {pr…...

Android Studio 接入OpenCV最简单的例子 : 实现灰度图效果

1. 前言 上文 我们在Windows电脑上实现了人脸功能,接下来我们要把人脸识别的功能移植到Android上。 那么首先第一步,就是要创建一个Native的Android项目,并且配置好OpenGL,并能够调用成功。 这里我们使用的是openCV-4.8.0&#x…...

(1)、扩展SpringCache一站式解决缓存击穿,穿透,雪崩

1、问题描述 我们在使用SpringCache的@Cacheable注解时,发现并没有设置过期时间这个功能。 @Target({ElementType.TYPE, ElementType.METHOD}) @Retention(RetentionPolicy.RUNTIME) @I...

Rancher使用cert-manager安装报错解决

报错: rancher-rke-01:~/rke/rancher-helm/rancher # helm install rancher rancher-stable/rancher --namespace cattle-system --set hostnamewww.rancher.local Error: INSTALLATION FAILED: Internal error occurred: failed calling webhook "webhook…...

Harvard transformer NLP 模型 openNMT 简介入门

项目网址: OpenNMT - Open-Source Neural Machine Translation logo: 一,从应用的层面先跑通 Harvard transformer GitHub - harvardnlp/annotated-transformer: An annotated implementation of the Transformer paper. ​git clone https…...

【数据结构OJ题】用栈实现队列

原题链接:https://leetcode.cn/problems/implement-queue-using-stacks/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 用两个栈实现,一个栈进行入队操作,另一个栈进行出队操作。 出队操作: 当出队的栈…...

通达信指标公式15:除权除息数据统计分析

#1.关于除权除息指标的介绍:本指标是小红牛原创指标之一,觉得有必要研究一下这个问题,所以就花时间整理一下这个指标相关内容,大家可以在本源码基础上,进一步优化自己的思路。本指标为通达信幅图指标,可以做…...

day-27 代码随想录算法训练营(19)回溯part03

39.组合总和 分析:同一个数可以选多次,但是不能有重复的答案; 思路:横向遍历,纵向递归(不同的是递归的时候不需要跳到下一个位置,因为同一个数可以选多次) class Solution { publ…...

CSDN编程题-每日一练(2023-08-22)

CSDN编程题-每日一练(2023-08-22) 一、题目名称:最长递增区间二、题目名称:K树三、题目名称:小Q的价值无向图一、题目名称:最长递增区间 时间限制:1000ms内存限制:256M 题目描述: 给一个无序数组,求最长递增的区间长度。如:[5,2,3,8,1,9] 最长区间 2,3,8 长度为 3。…...

使用 KubeBlocks 为 K8s 提供稳如老狗的数据库服务

原文链接:https://forum.laf.run/d/994 大家好!今天这篇文章主要向大家介绍 Sealos 的数据库服务。在 Sealos 上数据库后端服务由 KubeBlocks 提供,为用户的数据库应用保驾护航。无论你是在公有云还是本地环境中使用,Sealos 都能为…...

SFL212B-10-21-15、SFL212B-20-21-40喷嘴挡板伺服阀

SFL212B-05-21-10、SFL212B-10-21-15、SFL212B-20-21-40、SFL212-05-32-10、SFL212-10-32-15、SFL212-20-32-40、SFL212A-05-21-10、SFL212A-10-21-15、SFL212A-20-21-40喷嘴挡板力反馈伺服阀,外置伺服放大器,四通,带阀芯阀套的两级伺服阀&am…...

阿里云100元预算可选的云服务器配置2核2G3M带宽

阿里云服务器100元可以买到哪些配置?如果是一年时长,轻量应用服务器2核2G3M带宽一年108元,系统盘为50GB高效云盘。以前阿里云服务器ECS卖过35元一年、69元、88元、89元和99元的都有过,但是现在整体费用上涨,入门级云服…...

Linux问题--docker启动mysql时提示3306端口被占用

问题描述: 解决方法: 1.如果需要kill掉mysqld服务可以先通过 lsof -i :3306 2. 查询到占用3306的PID,随后使用 kill -15 PID 来kill掉mysqld服务。 最后结果...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例:使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例:使用OpenAI GPT-3进…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来&#xf…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...

Netty从入门到进阶(二)

二、Netty入门 1. 概述 1.1 Netty是什么 Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. Netty是一个异步的、基于事件驱动的网络应用框架,用于…...

2025年渗透测试面试题总结-腾讯[实习]科恩实验室-安全工程师(题目+回答)

安全领域各种资源,学习文档,以及工具分享、前沿信息分享、POC、EXP分享。不定期分享各种好玩的项目及好用的工具,欢迎关注。 目录 腾讯[实习]科恩实验室-安全工程师 一、网络与协议 1. TCP三次握手 2. SYN扫描原理 3. HTTPS证书机制 二…...

android13 app的触摸问题定位分析流程

一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中,集合判空是一个常见但容易出错的场景。传统方式虽然可行,但存在一些潜在问题: // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...