当前位置: 首页 > news >正文

DataWhale 机器学习夏令营第三期

DataWhale 机器学习夏令营第二期

  • 学习记录一 (2023.08.18)
    • 1.赛题理解
    • 2.缺失值分析
    • 3. 简单特征提取
    • 4. 数据可视化
      • 离散变量
      • 离散变量分布分析

DataWhale 机器学习夏令营第三期
——用户新增预测挑战赛


学习记录一 (2023.08.18)

已跑通baseline,换为lightgbm基线,不加任何特征线上得分0.52214
添加baseline特征,线上得分0.78176
暴力衍生特征并微调模型参数,线上得分0.86068

1.赛题理解

赛题数据由约62万条训练集、20万条测试集数据组成,共包含13个字段。

  • 其中uuid为样本唯一标识,
  • eid为访问行为ID,
  • udmap为行为属性,其中的key1到key9表示不同的行为属性,如项目名、项目id等相关字段,
  • common_ts为应用访问记录发生时间(毫秒时间戳),
  • 其余字段x1至x8为用户相关的属性,为匿名处理字段。
  • target字段为预测目标,即是否为新增用户。

2.缺失值分析

print('-----Missing Values-----')
print(train_data.isnull().sum())print('\n')
print('-----Classes-------')
display(pd.merge(train_data.target.value_counts().rename('count'),train_data.target.value_counts(True).rename('%').mul(100),left_index=True,right_index=True
))

分析:数据无缺失值, 533155(85.943394%)负样本, 87201(14.056606%)正样本

数据分布不均的处理:

  • 阈值迁移
  • 设置样本权重
weight_0 = 1.0  # 多数类样本的权重
weight_1 = 8.0  # 少数类样本的权重
dtrain = lgb.Dataset(X_train, label=y_train, weight=y_train.map({0: weight_0, 1: weight_1}))
dval = lgb.Dataset(X_val, label=y_val, weight=y_val.map({0: weight_0, 1: weight_1}))

3. 简单特征提取

行为相关特征:eid和udmap相关特征提取

  • udmap中value特征提取:baseline中已经给出
  • udmap中key特征提取
import jsondef extract_keys_as_string(row):if row == 'unknown':return Noneelse:parsed_data = json.loads(row)keys = list(parsed_data.keys())keys_string = '_'.join(keys)  # 用下划线连接 keyreturn keys_stringtrain_df['udmap_key'] = train_df['udmap'].apply(extract_keys_as_string)
train_df['udmap_key'].value_counts()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-PkbowYDJ-1692365546794)(C:\Users\ZYM\AppData\Roaming\Typora\typora-user-images\image-20230818195454065.png)]

观察eid和udmap_key 对应关系

train_df.groupby('eid')['udmap_key'].unique()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-9zqnrzDe-1692365546795)(C:\Users\ZYM\AppData\Roaming\Typora\typora-user-images\image-20230818195553955.png)]

分析:可以看到eid和key是强相关甚至是一一对应的,后续可以围绕着eid、key、value构造行为相关特征。

4. 数据可视化

离散变量

查看各个特征情况:

for i in train_data.columns:if train_data[i].nunique() < 10:print(f'{i}, {train_data[i].nunique()}: {train_data[i].unique()}')else:print(f'{i}, {train_data[i].nunique()}: {train_data[i].unique()[:10]}')

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-sPwmt4rl-1692365546795)(C:\Users\ZYM\AppData\Roaming\Typora\typora-user-images\image-20230818200557544.png)]
分析:

  • [‘eid’, ‘x3’, ‘x4’, ‘x5’] 为取值较多的类别特征想

  • [‘x1’, ‘x2’, ‘x6’,'x7, ‘x8’]为取值较少的类别特征, x8 基本确定为性别特征

离散变量分布分析

研究离散变量['eid', 'x3', 'x4', 'x5‘,'x1', 'x2', 'x6','x7', 'x8'']的分布,蓝色是训练集,黄色是验证集,分布基本一致
粉色的点是训练集下每个类别每种取值的target的均值,也就是target=1的占比

绘制代码:

def plot_cate_large(col):data_to_plot = (all_df.groupby('set')[col].value_counts(True)*100)fig, ax = plt.subplots(figsize=(10, 6))sns.barplot(data=data_to_plot.rename('Percent').reset_index(),hue='set', x=col, y='Percent', ax=ax,orient='v',hue_order=['train', 'test'])x_ticklabels = [x.get_text() for x in ax.get_xticklabels()]# Secondary axis to show mean of targetax2 = ax.twinx()scatter_data = all_df.groupby(col)['target'].mean()scatter_data.index = scatter_data.index.astype(str)ax2.plot(x_ticklabels,scatter_data.loc[x_ticklabels],linestyle='', marker='.', color=colors[4],markersize=15)ax2.set_ylim([0, 1])# Set x-axis tick labels every 5th valuex_ticks_indices = range(0, len(x_ticklabels), 5)ax.set_xticks(x_ticks_indices)ax.set_xticklabels(x_ticklabels[::5], rotation=45, ha='right')# titlesax.set_title(f'{col}')ax.set_ylabel('Percent')ax.set_xlabel(col)# remove axes to show only one at the endhandles = []labels = []if ax.get_legend() is not None:handles += ax.get_legend().legendHandleslabels += [x.get_text() for x in ax.get_legend().get_texts()]else:handles += ax.get_legend_handles_labels()[0]labels += ax.get_legend_handles_labels()[1]ax.legend().remove()plt.legend(handles, labels, loc='upper center', bbox_to_anchor=(0.5, 1.08), fontsize=12)plt.tight_layout()plt.show()

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

下一步,分析数据,构建特征。

相关文章:

DataWhale 机器学习夏令营第三期

DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.18)1.赛题理解2.缺失值分析3. 简单特征提取4. 数据可视化离散变量离散变量分布分析 DataWhale 机器学习夏令营第三期 ——用户新增预测挑战赛 学习记录一 (2023.08.18) 已跑通baseline&#xff0c;换为lightgbm基线&#…...

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现BES-LSSVM秃鹰搜索算法优化最小二乘支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&a…...

python分析实战(4)--获取某音热榜

1. 分析需求 打开某音热搜&#xff0c;选择需要获取的热榜如图 查找包含热搜内容的接口返回如图 将url地址保存 2. 开发 定义请求头 headers {Cookie: 自己的cookie,Accept: application/json, text/plain, */*,Accept-Encoding: gzip, deflate,Host: www.douyin.com,…...

Java根据List集合中的一个字段对集合进行去重

利用HashSet 创建了一个HashSet用于存储唯一的字段值&#xff0c;并创建了一个新的列表uniqueList用于存储去重后的对象。遍历原始列表时&#xff0c;如果字段值未在HashSet中出现过&#xff0c;则将其添加到HashSet和uniqueList中。 List<Person> originalList new Ar…...

(AtCoder Beginner Contest 315)

A.直接模拟即可 import random import sys import os import math from collections import Counter, defaultdict, deque from functools import lru_cache, reduce from itertools import accumulate, combinations, permutations from heapq import nsmallest, nlargest, h…...

API 接口选择那个?RESTful、GraphQL、gRPC、WebSocket、Webhook

大家好&#xff0c;我是比特桃。目前我们的生活紧紧地被大量互联网服务所包围&#xff0c;互联网上每天都有数百亿次API调用。API 是两个设备相互通讯的一种方式&#xff0c;人们在手机上每次指尖的悦动&#xff0c;背后都是 API 接口的调用。 本文将列举常见的一些 API 接口&…...

「Python|音视频处理|环境准备」如何在Windows系统下安装并配置音视频处理工具FFmpeg

本文主要介绍如何在Windows系统下安装并配置音视频处理工具FFmpeg&#xff0c;方便使用python进行音视频相关的下载或编辑处理。 文章目录 一、下载软件二、解压并配置三、验证安装 一、下载软件 首先要去 ffmpeg官网 下载软件包 由于上面直接下载的按钮是.tar.xz格式的。为了…...

软考高级架构师下篇-12层次式架构设计理论与实践

目录 1. 考情分析2. 层次式体系结构概述3. 表现层框架设计4. 中间层框架设计5. 数据访问层设计6. 数据架构规划与设计7. 物联网层次架构设计8. 前文回顾1. 考情分析 根据考试大纲,层次式架构设计理论与实践知识点会涉及单选题型(约占2~5分)和案例题(25分),本小时内容偏重于方…...

234. 回文链表

234. 回文链表 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为回文链表。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 /*** Definition for singly-linked list.* struct ListNode {* int val;* ListNode *next;* L…...

LInux之例行工作

目录 场景 单一执行例行任务 --- at&#xff08;一次性&#xff09; 安装 命令详解 语法格式 参数及作用 时间格式 案例 at命令执行过程分析 循环执行的例行性任务--crontab&#xff08;周期性&#xff09; crontd服务安装 linux 任务调度的工分类 crontab工作过程…...

C++,从“hello world“开始

一、"hello world" #inclue <iostream>using namespace std;int main() {cout << "hello world" << endl;return 0; } 1.1 #include&#xff1a;预处理标识 1.2 <iostream>&#xff1a;输入输出流类所在头文件 1.2.1 istream&a…...

/root/.ssh/config line 2: Bad protocol 2 host key algorithms ‘+ssh-rsa‘.

文章目录 1、问题2、查看openssh版本3、解决问题4、重新生成密钥5、查看是否可连接工蜂 1、问题 ssh访问工蜂报错&#xff1a; [rootlocalhost .ssh]# ssh -T gitgit.code.tencent.com /root/.ssh/config line 2: Bad protocol 2 host key algorithms ‘ssh-rsa’. 2、查看o…...

mac m1上系统内录内部声音的方法/无需安装Blackhole

总所周知&#xff0c;m1的mac不能录制桌面音频&#xff0c;obsstudio都不行。 最快的解决方法就是下载飞书&#xff1a; 登陆后新建直播/视频会议&#xff1a; 共享的时候选择下面的两个钩上去就好了...

数字人学习目录

数字人学习目录 百度PaddlePaddleHub图像风格迁移模型pp-tinypose模型 PaddleGANPaddleLitePaddleDetectionPP-TinyPose 人体骨骼关键点识别 PaddleSpeechVisualDLPaddleBobo TransformerWav2LibCLIPFFMpeg模型库数据集学习天地PythonJupyter Notebook Unity3DUE 百度Paddle P…...

PHP 房产网站系统Dreamweaver开发mysql数据库web结构php编程计算机网页项目

一、源码特点 PHP 房产网站系统是一套完善的WEB设计系统&#xff0c;对理解php编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。 源码 https://download.csdn.net/download/qq_41221322/88233553 论文 https://download…...

0基础入门代码审计-2 Fortify初探

0x01 序言 目前又加入一位新童鞋了&#xff0c;最近将会再加入cs相关的专栏&#xff0c;都是以基础为主&#xff0c;毕竟太复杂的东西&#xff0c;能看懂的人太少。 0x02 准备工具 1、Fortify 2、需要审计的源码 0x03 Fortify的简单使用 1、 1、在开始菜单栏中找到Audit Wo…...

qiiuzhiji4

本篇是从慧与离职后到2023年8月21日这段时间的经历 2023/7/31至2023/8/21 本篇初次写于2023年8月21日 从慧与离职后基本上就是在专心找工作了&#xff0c;但是有在这段时间找工作经历的人都明白&#xff0c;IT行业不复以往了。尤其是对于我这样的普通二本学历的人来说&#xff…...

构建 NodeJS 影院微服务并使用 docker 部署【01/4】

图片来自谷歌 — 封面由我制作 一、说明 构建一个微服务的电影网站&#xff0c;需要Docker、NodeJS、MongoDB&#xff0c;这样的案例您见过吗&#xff1f;如果对此有兴趣&#xff0c;您就继续往下看吧。 在本系列中&#xff0c;我们将构建一个 NodeJS 微服务&#xff0c;并使用…...

变频器和plc之间无线MODBUS通讯

在工业现场由PLC远程控制变频器的应用非常常见&#xff0c;如果挖沟布线不便或者变频器在移动设备上&#xff0c;那么采用无线通讯就是最佳方案。 这里我们选用最常用的三菱 FX2N PLC和三菱变频器为例&#xff0c;并结合日系plc专用无线通讯终端DTD435M来说明PLC与变频器之间的…...

【云原生】3分钟快速在Kubernetes1.25部署Prometheus2.42+Grafana9.5.1+Alertmanager0.25

文章目录 1、简介2、GitHub地址3、环境信息4、安装5、访问Grafana1、简介 Prometheus-operator帮助我们快速创建Prometheus+Grafana+Alertmanager等服务,而kube-prometheus更加完整的帮助我们搭建全套监控体系,这包括部署多个 Prometheus 和 Alertmanager 实例, 指标导出器…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

循环冗余码校验CRC码 算法步骤+详细实例计算

通信过程&#xff1a;&#xff08;白话解释&#xff09; 我们将原始待发送的消息称为 M M M&#xff0c;依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)&#xff08;意思就是 G &#xff08; x ) G&#xff08;x) G&#xff08;x) 是已知的&#xff09;&#xff0…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

今日科技热点速览

&#x1f525; 今日科技热点速览 &#x1f3ae; 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售&#xff0c;主打更强图形性能与沉浸式体验&#xff0c;支持多模态交互&#xff0c;受到全球玩家热捧 。 &#x1f916; 人工智能持续突破 DeepSeek-R1&…...

USB Over IP专用硬件的5个特点

USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中&#xff0c;从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备&#xff08;如专用硬件设备&#xff09;&#xff0c;从而消除了直接物理连接的需要。USB over IP的…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

(一)单例模式

一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...

前端中slice和splic的区别

1. slice slice 用于从数组中提取一部分元素&#xff0c;返回一个新的数组。 特点&#xff1a; 不修改原数组&#xff1a;slice 不会改变原数组&#xff0c;而是返回一个新的数组。提取数组的部分&#xff1a;slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...

全面解析数据库:从基础概念到前沿应用​

在数字化时代&#xff0c;数据已成为企业和社会发展的核心资产&#xff0c;而数据库作为存储、管理和处理数据的关键工具&#xff0c;在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理&#xff0c;到社交网络的用户数据存储&#xff0c;再到金融行业的交易记录处理&a…...