当前位置: 首页 > news >正文

并查集及其简单应用

在这里插入图片描述

文章目录

  • 一.并查集
  • 二.并查集的实现
  • 三.并查集的基本应用

一.并查集

  • 并查集的逻辑结构:由多颗不相连通多叉树构成的森林(一个这样的多叉树就是森林的一个连通分量)

    • 并查集的元素(树节点)用0~9的整数表示,并查集可以表示如下: 在这里插入图片描述
  • 并查集的物理存储结构:并查集一般采用顺序结构实现,用数组下标表示并查集的元素,数组元素用于记录并查集中的元素间的关系:在这里插入图片描述

    • 并查集的元素对应的数组元素负数,则表示该并查集元素某颗多叉树的根且没有前驱结点,负数的绝对值表示该颗多叉树(并查集的连通分量)的元素个数
    • 并查集的元素对应的数组元素非负数,这个非负数则表示该并查集的元素的前驱结点
  • 并查集数据结构常用的运算就是==(连通分量)多叉树间的合并算法==:在这里插入图片描述

二.并查集的实现

  • 并查集的初始状态设置:在这里插入图片描述
  • 简单的代码实现:
#include <iostream>
#include <vector>
#include <string>//采用适配器模式实现并查
class UnionFindSet
{
public://构造函数参数为并查集中的元素个数,并查集的初始状态为size颗树构成的森林(size个连通分量)UnionFindSet(size_t size):_SetMap(size,-1){}//给定一个并查集元素找到其所在的(连通分量)多叉树的根结点size_t FindRoot(int Node) const throw(std :: string){//越界检查if (Node < 0 || Node >= _SetMap.size())throw "Label out of range";	while (_SetMap[Node] >= 0){Node = _SetMap[Node];}return static_cast<size_t>(Node);}//给定两个并查集元素,将它们所在的(连通分量)多叉树进行合并运算void Union(int Node1, int Node2)  throw(std::string){//越界检查if (Node1 < 0 || Node1 > _SetMap.size()|| Node2 < 0 || Node2 > _SetMap.size())throw "Label out of range";//先找到两个元素所在的(连通分量)多叉树的根size_t root1 = FindRoot(Node1);size_t root2 = FindRoot(Node2);//进行多叉树合并操作if (root1 != root2){_SetMap[root1] += _SetMap[root2];_SetMap[root2] = static_cast<int>(root1);}}//计算并查集中多叉树的颗数(连通分量的个数)size_t SetCount() const noexcept{//并查集中多叉树的颗数就是vector中负数元素的个数size_t count = 0;for (auto e : _SetMap){if (e < 0)++count;}return count;}
private:std::vector<int> _SetMap;
};
  • 并查集是一种经常用于划分等价类的数据结构.以树形逻辑结构为基础,以一颗多叉树(一个连通分量)表示一个等价类,多个互相不连通的多叉树(连通分量)构成的森林用于表示多个等价类构成的集合,使用并查集可以很好地解决等价类的划分和计数问题(即图的连通分量的求解问题)

三.并查集的基本应用

LeetCoed : LCR 116. 省份数量

  • 这个问题就是一个等价类集合构建和计数问题,可以使用并查集解决.(题目中的相连关系就是一种相对于相同省份性质的等价关系)
  • 问题的本质可以抽象为:以城市为元素依据相连关系形成的图结构的最小生成树的个数(即连通分量的个数),可以采用dfsbfs遍历算法,此处提供使用并查集的一种写法.
  • 借助vectorlambda表达式建立简单的并查集最后返回并查集中多叉树的个数:
class Solution 
{
public:int findCircleNum(vector<vector<int>>& isConnected) {//创建简易的并查集vector<int> UnionSet(isConnected.size(),-1);//定义Find函数,根据结点找到多叉树的根auto Find = [&UnionSet](int Node){while(UnionSet[Node] >=0){Node = UnionSet[Node];}return Node;};for(int i = 0; i < isConnected.size(); ++i){for(int j = i+1; j < isConnected.size(); ++j){if(isConnected[i][j] == 1){//多叉树合并int root1 = Find(i);int root2 = Find(j);if(root1 != root2){UnionSet[root1] += UnionSet[root2];//这句代码用于修改结点计数,此题中可以不加UnionSet[root2] = root1;}}}}int count = 0;//统计并查集中多叉树的个数for(auto e : UnionSet){if(e < 0 ) ++count;}return count;}
};

LeetCode:990. 等式方程的可满足性

  • 这同样是一个等价类划分的问题:将0~25的各个编号与a~z二十六个字母建立映射关系,根据字母间相等关系构建并查集:
class Solution 
{
public:bool equationsPossible(vector<string>& equations) {vector<int> UionSet(26,-1);auto FindRoot = [&UionSet](int Node){while(UionSet[Node] >= 0){Node = UionSet[Node];}return Node;};//先遍历等式方程中的字母,在并查集中将它们归类到各个多叉树中(构建相等关系等价类集合)for(auto str : equations){//遇到等式,等式两边字母应该属于并查集中同一颗多叉树if(str[1] == '='){int root1 = FindRoot(str[0]-'a');int root2 = FindRoot(str[3]-'a');if(root1 != root2){UionSet[root1] += UionSet[root2];UionSet[root2] = root1;}}}//再处理不等式方程,检验相容性for(auto str : equations){//遇到不等式,不等式两边字母不能属于并查集中同一颗多叉树if(str[1] == '!'){int root1 = FindRoot(str[0]-'a');int root2 = FindRoot(str[3]-'a');if(root1 == root2){return false;}}}return true;}
};

在这里插入图片描述

相关文章:

并查集及其简单应用

文章目录 一.并查集二.并查集的实现三.并查集的基本应用 一.并查集 并查集的逻辑结构:由多颗不相连通的多叉树构成的森林(一个这样的多叉树就是森林的一个连通分量) 并查集的元素(树节点)用0~9的整数表示,并查集可以表示如下: 并查集的物理存储结构:并查集一般采用顺序结构实…...

基于web的服装商城系统java网上购物商店jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目&#xff0c;Java EE JSP项目&#xff0c;在工作环境中基本使用不到&#xff0c;但是很多学校把这个当作编程入门的项目来做&#xff0c;故分享出本项目供初学者参考。 一、项目描述 基于web的服装商城系统 系统有1权限&#xff1a;前台…...

.NET Core发布到IIS

项目介绍 1、开发工具Visual Studio 2017&#xff0c;语言C#&#xff0c;SQL SERVER&#xff0c;WIN10 2、本地IIS&#xff0c;手机上或其他用户在和本地在同一个局域网内访问,同时要把防火墙关掉 3、IIS全名Internet Information Services&#xff0c;用来发布网站 先决条件 安…...

Spring的基本概念

前言 Spring 究竟是什么&#xff1f;其实Spring简单来说就是一个包含众多工具方法的IOC容器。 那么什么是IOC呢&#xff1f; IoC Inversion of Control 翻译成中⽂是“控制反转”的意思. 既然Spring 是⼀个IoC&#xff08;控制反转&#xff09;容器&#xff0c;重点还在“容…...

设计模式之原型模式

文章目录 一、介绍二、实现步骤三、案例四、应用五、细胞分裂六、改造细胞分裂逻辑七、总结 一、介绍 原型模式属于创建型设计模式&#xff0c;用于创建重复的对象&#xff0c;且同时又保证了性能。 该设计模式的好处是将对象的创建与调用方分离。 其目的就是**根据一个对象…...

正则表达式在网页处理中的应用四则

正则表达式在网页处理中的应用四则 正则表达式(Regular Expression)为字符串模式匹配提供了一种高效、方便的方法。几乎所有高级语言都提供了对正则表达式的支持,或者提供了现成的代码库供调用。本文以ASP环境中常见的处理任务为例,介绍正则表达式的应用技巧。 一、检验密…...

ping使用方法

文章目录 1、Ping的基础知识2、Ping命令详解3、怎样使用Ping这命令来测试网络连通&#xff1f;4、如何用Ping命令来判断一条链路好坏&#xff1f;5、对Ping后返回信息的分析1.Request timed out2.Destination host Unreachable 1、Ping的基础知识 ping命令相信大家已经再熟悉不…...

“心理健康人工智能产学研创新联盟”揭牌成立|深兰科技

8月14日上午&#xff0c;“2023树洞救援年会”在上海举行&#xff0c;会上举行了“心理健康人工智能产学研创新联盟”的签约和揭牌仪式。“树洞行动救援团”创始人深兰科技科学院智能科学首席科学家、荷兰阿姆斯特丹自由大学人工智能系终身教授黄智生&#xff0c;深兰科技集团创…...

FastDFS+Nginx - 本地搭建文件服务器同时实现在外远程访问「端口映射」

文章目录 前言1. 本地搭建FastDFS文件系统1.1 环境安装1.2 安装libfastcommon1.3 安装FastDFS1.4 配置Tracker1.5 配置Storage1.6 测试上传下载1.7 与Nginx整合1.8 安装Nginx1.9 配置Nginx 2. 局域网测试访问FastDFS3. 安装cpolar内网穿透4. 配置公网访问地址5. 固定公网地址5.…...

Mybatis-动态sql和分页

目录 一.什么是Mybatis动态分页 二.mybatis中的动态SQL 在BookMaaper.xml中写sql BookMapper BookBiz接口类 BookBizImpl实现接口类 demo测试类 ​编辑 测试结果 三.mybatis中的模糊查询 mybatis中的#与$有是什么区别 在BookMapper.xml里面建立三个模糊查询 ​编辑 …...

基于YOLOV8模型的西红柿目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要&#xff1a;基于YOLOV8模型的西红柿目标检测系统可用于日常生活中检测与定位西红柿目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数…...

数学建模及数据分析 || 4. 深度学习应用案例分享

PyTorch 深度学习全连接网络分类 文章目录 PyTorch 深度学习全连接网络分类1. 非线性二分类2. 泰坦尼克号数据分类2.1 数据的准备工作2.2 全连接网络的搭建2.3 结果的可视化 1. 非线性二分类 import sklearn.datasets #数据集 import numpy as np import matplotlib.pyplot as…...

数据分析15——office中的Excel基础技术汇总

0、前言&#xff1a; 这部分总结就是总结每个基础技术的定义&#xff0c;在了解基础技术名称和定义后&#xff0c;方便对相关技术进行检索学习。笔记不会详细到所有操作都说明&#xff0c;但会把基础操作的名称及作用说明&#xff0c;可自行检索。本文对于大部分读者有以下作用…...

C语言好题解析(四)

目录 选择题一选择题二选择题三选择题四选择题五编程题一 选择题一 已知函数的原型是&#xff1a; int fun(char b[10], int *a); 设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xff09; A: fun(c,&d); B: fun(c,d); C: fun(&…...

英语——主谓一致

主谓一致是指句子的谓语动词与其主语在数上必须保持一致,一般遵循以下三个原则: 一、语法形式上一致,即单复数形式与谓语要一致。 二、意义上一致,即主语意义上的单复数要与谓语的单复数形式一致。 三、就近以及就远原则,即谓语动词的单复形式取决于最靠近它的词语或者离它…...

属性字符串解析

连续的KV的字符串&#xff0c;每个KV之间用","分隔&#xff0c;V中可嵌套KV的连续字符串结构&#xff0c;例如“ key1value1,key2value2,key3[key4value4,key5value5,key6[key7value7]],key8value8 请编写如下函数&#xff0c;给定字符串&#xff0c;输出嵌套结构的H…...

【C++初阶】vector容器

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前学习C和算法 ✈️专栏&#xff1a;C航路 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac; 点赞&#x1…...

ThreadLocal深度解析

简介 在并发编程中&#xff0c;导致并发bug的问题都会归结于对共享变量的操作不当。多个线程同时读写同一共享变量存在并发问题&#xff0c;我们可以利用写时复制、不变性来突破对原数据的写操作&#xff0c;没有写就没有并发问题&#xff0c;而本篇文章所介绍的技术是突破共享…...

06有监督学习——迁移学习

1.迁移学习分类 &#xff08;1&#xff09; 基于实例的迁移学习方法&#xff1a; 假设:源域中的一些数据和目标域会共享很多共同的特征方法:对源域进行instance reweighting&#xff0c;筛选出与目标域数据相似度高的数据&#xff0c;然后进行训练学习 &#xff08;2&#x…...

快速连接服务器脚本 可从多个服务中选择并连接

使用 python 做一个可选择服务器登录连接的脚本 前置条件 需要有python 环境python --version 显示版本号即可检查 python 是否有 paramiko 包没有的话 python install paramiko创建一个python 文件,内容如下 # -*- coding: utf-8 -*-""" Authors: huxiaohua…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Admin.Net中的消息通信SignalR解释

定义集线器接口 IOnlineUserHub public interface IOnlineUserHub {/// 在线用户列表Task OnlineUserList(OnlineUserList context);/// 强制下线Task ForceOffline(object context);/// 发布站内消息Task PublicNotice(SysNotice context);/// 接收消息Task ReceiveMessage(…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧

上周三&#xff0c;HubSpot宣布已构建与ChatGPT的深度集成&#xff0c;这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋&#xff0c;但同时也存在一些关于数据安全的担忧。 许多网络声音声称&#xff0c;这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...

日常一水C

多态 言简意赅&#xff1a;就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过&#xff0c;当子类和父类的函数名相同时&#xff0c;会隐藏父类的同名函数转而调用子类的同名函数&#xff0c;如果要调用父类的同名函数&#xff0c;那么就需要对父类进行引用&#…...