当前位置: 首页 > news >正文

如何运行YOLOv6的代码实现目标识别?

YOLOv6是由美团视觉团队开发的

1.环境配置

我们先把YOLOv6的代码clone下来

git clone https://github.com/meituan/YOLOv6.git

安装一些必要的包

pip install pycocotools==2.0

作者要求pytorch的版本是1.8.0,我的环境是1.7.0,也是可以正常运行的

pip install -r requirements_my_version.txt

我除了上面那个包以外安装的东西和版本如下,安装这样装,我是可以正常运行模型的

matplotlib==3.2.2
numpy==1.18.5
opencv-python==4.1.2.30 # 注意这个地方官方提供的是opencv-python>=4.1.2,但是安装的时候告诉你没有这个版本要你从里面选,我选了30,后面可以运行
Pillow==7.1.2
PyYAML==5.3.1
requests==2.23.0
scipy==1.4.1
torch==1.7.0
torchvision==0.8.1
tqdm==4.41.0# plotting ------------------------------------pandas==1.1.4
seaborn==0.11.0# deep_sort -----------------------------------easydict# torchreidCython
h5py
six
tb-nightly
future
yacs
gdown
flake8
yapf
isort==4.3.21
imageio

2.运行代码实现识别

如果你要从头重新自己训练一个YOLOv6的识别,自己训练一个模型,你想复现reproduce可以参考这个代码

https://github.com/meituan/YOLOv6/blob/main/docs/Train_coco_data.md

Inference

视频计数

基于你自己的数据集,而不是训练集COCO,进行识别(打方框),并将识别的结果保存成文件存在本地

# P5 models
# 官方提供的指令
python tools/infer.py --weights yolov6s.pt --source img.jpg / imgdir / video.mp4
# 每个参数的含义
python 运行的代码文件的路径 --weights 模型文件的名字或路径+名字 --source 图片、图片所在文件夹、视频文件python ./tools/infer.py --weights ./yolov6s.pt --source ./eval_my/dandong.mp4
# 记得模型参数那个一定要写./,否则如果你直接写yolov6s.pt的话,会把模型又下载一遍

运行后,识别完成的视频都保存在这个位置/runs/inference/exp

打开一看,识别的都很好,(1)远处小的车也可以识别出来,yolo5只能识别出近处的车(2)每个车识别出来,置信度更高

上面使用的那个模型yolov6s.pt是作者所说的P5 model,其实作者还提供训练的更好、参数更多、速度更快的模型P6 model

https://github.com/meituan/YOLOv6/releases/tag/0.3.0

下面那些带6的就是P6,不带6的就是P5模型

更换P6模型也很简单,--weights这个参数后面的模型文件换成 带s的P6模型即可

# P6 models
python tools/infer.py --weights ./yolov6s6.pt --source ./eval_my/dandong.mp4

经过美团优化后的模型连椅子、和自行车都能识别出来,你说厉不厉害?

图片计数

python tools/infer.py --weights yolov6s.pt --source ./eval_my/15_persons.PNG

这张原图

识别出来,是这样.(1)每个人也是都能识别出来的,尤其是特别小的人能够识别出来,(2)除了特别小的那种人,其他的识别的置信度都很高

本机摄像头

# 官方教程
python tools/infer.py --weights yolov6s.pt --webcam --webcam-addr 0
# --webcam 跟着网络摄像头的网址
# --webcam-addr 加0是本机摄像头# 这样是可以运行的
python tools/infer.py --weights yolov6s.pt --webcam-addr 0

可以运行是可以运行,但是我识别过程没显示,识别结果没有保存。具体怎么用,以后再研究。

Evaluation

基于COCO数据集,进行识别,并展示performance score

python -m torch.distributed.launch --nproc_per_node 8 tools/train.py --batch 256 --conf configs/yolov6s_finetune.py --data data/dataset.yaml --fuse_ab --device 0,1,2,3,4,5,6,7

这个我不知道COCO数据集怎么摆放,所以跑了会报错。后面用到再来解决吧。

Traceback (most recent call last):File "tools/eval.py", line 164, in <module>main(args)File "tools/eval.py", line 159, in mainrun(**vars(args))File "/home/albert/anaconda3/envs/py380tc170/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 26, in decorate_contextreturn func(*args, **kwargs)File "tools/eval.py", line 141, in rundata = Evaler.reload_dataset(data, task) if isinstance(data, str) else dataFile "/media/F:/FILES_OF_ALBERT/IT_paid_class/graduation_thesis/model_innov/Yolov6_DeepSort_Pytorch/yolov6/YOLOv6/yolov6/core/evaler.py", line 437, in reload_datasetraise Exception('Dataset not found.')
Exception: Dataset not found.

这个repo写的很详细,包括了这些东西

代码运行的教程(1)基于COCO数据集训练模型,完成复现(2)基于自定义的数据训练、精调模型(3)测试集上进行测试,测试速度(4)对模型进行量化压缩

相关文章:

如何运行YOLOv6的代码实现目标识别?

YOLOv6是由美团视觉团队开发的1.环境配置我们先把YOLOv6的代码clone下来git clone https://github.com/meituan/YOLOv6.git安装一些必要的包pip install pycocotools2.0作者要求pytorch的版本是1.8.0,我的环境是1.7.0&#xff0c;也是可以正常运行的pip install -r requirement…...

新品BCM6755A1KFEBG/MT7921LE/MT7921AU WiFi芯片

博通在WiFi市场具有相当的实力。在WiFi6上有下面这几个解决方案&#xff1a;型号&#xff1a;BCM6755 BCM6755A1KFEBG类型&#xff1a;四核1.5GHz CPU封装&#xff1a;BGA批次&#xff1a;新BCM6755和BCM6750还是A7架构&#xff0c;更多的用在中低端型号上。BCM6755和BCM6750 C…...

析构函数、拷贝构造

1、析构函数析构函数的定义方式函数名和类名相同&#xff0c;在类名前加~&#xff0c;没有返回值类型&#xff0c;没有函数形参&#xff08;不能重载&#xff09;当对象生命周期结束的时候&#xff0c;系统会自动调用析构函数先调用析构函数&#xff0c;再释放对象的空间析构函…...

光学镜头是制作过程阶段理解

光学镜头是由多组镜片组合而成&#xff0c;它是摄影机投影一及显微镜上必不可少的部件。那么光学镜头是如何制造的呢&#xff1f;光学镜头的制作分为以下四个阶段&#xff1a;第一、首先将一大块光学玻璃用钻石锯片进行切片&#xff0c;然后用钻头在每一块玻璃切片上钻出多块冰…...

实验室设计|实验室设计要点SICOLAB

一、实验室设计规划要素1、实验室布局&#xff1a;实验室的布局要符合实验室工作流程&#xff0c;可以将实验室划分为干净区和污染区&#xff0c;以确保实验室的卫生和实验的准确性。2、设备选购&#xff1a;根据实验需要选择适当的设备&#xff0c;并确保设备的质量和性能符合…...

I.MX6ULL_Linux_系统篇(16) uboot分析-启动流程

原文链接&#xff1a;I.MX6ULL_系统篇(16) uboot分析-启动流程 – WSY Personal Blog (cpolar.cn) 前面我们详细的分析了 uboot 的顶层 Makefile&#xff0c;了解了 uboot 的编译流程。本章我们来详细的分析一下 uboot 的启动流程&#xff0c;理清 uboot 是如何启动的。通过对 …...

【C#】async关键字修饰后有无await的影响

文章目录测试总结拓展&#xff1a;js的async await问题参考测试 来自微软官网的说法&#xff1a; 异步方法通常包含 await 运算符的一个或多个匹配项&#xff0c;但缺少 await 表达式不会导致编译器错误。 如果异步方法未使用 await 运算符标记悬挂点&#xff0c;则该方法将作…...

Interspeech2022 | 一种基于元辅助学习的低资源口语语义理解方法

中国移动研究院首席科学家冯俊兰博士带领人工智能与智慧运营中心语音团队共同撰写的文章《Meta Auxiliary Learning for Low-resource Spoken Language Understanding》被语音国际顶会Interspeech2022接收。 关于Interspeech Interspeech 是国际最大且最全面关于言语科学与技…...

File类的用法和InputStream,OutputStream的用法

这里写自定义目录标题一、File类1.构造方法2.普通方法二、InputStream1.方法2.FileInputStream3.Scanner类的应用三、OutputStream1.方法2.FileOutputStream3.PrintWriter类的应用一、File类 1.构造方法 签名说明File(File parent, Stringchild)根据父目录 孩子文件路径&…...

Java多线程——Thread类的基本用法

一.线程的创建继承Thread类//继承Thread类class MyThread extends Thread{Overridepublic void run() {System.out.println("线程运行的代码");} } public class Demo1 {public static void main(String[] args) {MyThread t new MyThread();t.start();//启动线程&a…...

【C++】类和对象练习——日期类的实现

文章目录前言1. 日期的合法性判断2. 日期天数&#xff08;/&#xff09;2.1 和的重载2.2 对于两者复用的讨论3. 前置和后置重载4. 日期-天数&#xff08;-/-&#xff09;5. 前置- -和后置- -的重载6. 日期-日期7. 流插入<<重载8. 流提取>>重载9. 总结10. 源码展示前…...

[LeetCode周赛复盘] 第 333 场周赛20230219

[LeetCode周赛复盘] 第 333 场周赛20230219 一、本周周赛总结二、 [Easy] 6362. 合并两个二维数组 - 求和法1. 题目描述2. 思路分析3. 代码实现三、[Medium] 6365. 将整数减少到零需要的最少操作数1. 题目描述2. 思路分析3. 代码实现四、[Medium] 6364. 无平方子集计数1. 题目描…...

数字化时代,如何做好用户体验与应用性能管理

引言 随着数字化时代的到来&#xff0c;各个行业的应用系统从传统私有化部署逐渐转向公有云、行业云、微服务&#xff0c;这种变迁给运维部门和应用部门均带来了较大的挑战。基于当前企业 IT 运维均为多部门负责&#xff0c;且使用多种运维工具&#xff0c;因此&#xff0c;当…...

Python爬虫(7)selenium3种弹窗定位后点击操作,解决点击登录被隐藏iframe无法点击的登陆问题

之前的文章有关于更多操作方式详细解答&#xff0c;本篇基于前面的知识点进行操作&#xff0c;如果不了解可以先看之前的文章 Python爬虫&#xff08;1&#xff09;一次性搞定Selenium(新版)8种find_element元素定位方式 Python爬虫&#xff08;2&#xff09;-Selenium控制浏览…...

如何对项目健康度进行测量?评估项目健康状况

项目驱动变革&#xff0c;大部分公司逐步由运营驱动转变为项目驱动&#xff0c;带来更多重新和商业价值。对组织而言&#xff0c;从商业角度看&#xff0c;项目旨在推动组织从一个状态转到另一个状态&#xff0c;从而达成特定目标。项目的健康情况如何关乎项目和变革的成本&…...

美国原装二手keysight E4980A(安捷伦)2MHZ LCR表

Agilent E4980A、Keysight E4980A、LCR 表&#xff0c;20 Hz - 2 MHz E4980A 是 Agilent 的 2 MHz LCR 表。LCR表是一种电子测试设备&#xff0c;用于测量电子元件的电感&#xff08;L&#xff09;、电容&#xff08;C&#xff09;和电阻&#xff08;R&#xff09;。LCR 表可…...

《clean coder》:关于摆烂,争论和心态

“凡是不能在五分钟之内解决的争论&#xff0c;都不能依靠辩论解决” ---- Kent Beck 作为一个码农&#xff0c;我并不是一个喜欢争论的角色。很长一段时间会陷入一种摆烂的&#xff0c;被动的状态。“既然其他人想要这么做&#xff0c;就这么办吧”。这可能是非专业的行为中最…...

jenkins下载与简单使用

1.jenkins下载 因为我仍然使用的是jdk1.8进行开发&#xff0c;所以我下载的是jenkins2.332.1版本&#xff08;jenkins2.346.1版本在2022年末不再支持java8&#xff0c;如果项目使用的是jdk11可以继续使用该jenkins版本&#xff09;&#xff0c;更多版本下载请点击jenkins下载 …...

3|物联网控制|计算机控制-刘川来胡乃平版|第3章:计算机总线技术 补充串行总线部分|课堂笔记|ppt

2022年 10月 10日 3.3 外部总线 3.3.2 RS-232-C总线 机械特性...

Blazor入门100天 : 身份验证和授权 (3) - DB改Sqlite

目录 建立默认带身份验证 Blazor 程序角色/组件/特性/过程逻辑DB 改 Sqlite将自定义字段添加到用户表脚手架拉取IDS文件,本地化资源freesql 生成实体类,freesql 管理ids数据表初始化 Roles,freesql 外键 > 导航属性完善 freesql 和 bb 特性 本节源码 https://github.com/…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

STM32标准库-DMA直接存储器存取

文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA&#xff08;Direct Memory Access&#xff09;直接存储器存取 DMA可以提供外设…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 &#xff08;一&#xff09;项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台&#xff0c;其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言&#xff0c;首次接触 OpenBCI 设备时&#xff0c;往…...

Pydantic + Function Calling的结合

1、Pydantic Pydantic 是一个 Python 库&#xff0c;用于数据验证和设置管理&#xff0c;通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发&#xff08;如 FastAPI&#xff09;、配置管理和数据解析&#xff0c;核心功能包括&#xff1a; 数据验证&#xff1a;通过…...

AxureRP-Pro-Beta-Setup_114413.exe (6.0.0.2887)

Name&#xff1a;3ddown Serial&#xff1a;FiCGEezgdGoYILo8U/2MFyCWj0jZoJc/sziRRj2/ENvtEq7w1RH97k5MWctqVHA 注册用户名&#xff1a;Axure 序列号&#xff1a;8t3Yk/zu4cX601/seX6wBZgYRVj/lkC2PICCdO4sFKCCLx8mcCnccoylVb40lP...

python基础语法Ⅰ

python基础语法Ⅰ 常量和表达式变量是什么变量的语法1.定义变量使用变量 变量的类型1.整数2.浮点数(小数)3.字符串4.布尔5.其他 动态类型特征注释注释是什么注释的语法1.行注释2.文档字符串 注释的规范 常量和表达式 我们可以把python当作一个计算器&#xff0c;来进行一些算术…...