当前位置: 首页 > news >正文

Apache Hudi初探(二)(与flink的结合)--flink写hudi的操作(JobManager端的提交操作)

背景

在Apache Hudi初探(一)(与flink的结合)中,我们提到了Pipelines.hoodieStreamWrite 写hudi文件,这个操作真正写hudi是在Pipelines.hoodieStreamWrite方法下的transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFactory),具体分析一下写入的过程。

分析

对于transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFactory)这个代码片段,我们主要看operatorFactory 这个对象(transform这个操作是Flink框架的操作):

public class StreamWriteOperator<I> extends AbstractWriteOperator<I> {public StreamWriteOperator(Configuration conf) {super(new StreamWriteFunction<>(conf));}public static <I> WriteOperatorFactory<I> getFactory(Configuration conf) {return WriteOperatorFactory.instance(conf, new StreamWriteOperator<>(conf));}
}

最主要的hudi算子为StreamWriteOperator,其中最主要的操作是由StreamWriteFunction来完成的:

// StreamWriteFunction@Overridepublic void initializeState(FunctionInitializationContext context) throws Exception {this.taskID = getRuntimeContext().getIndexOfThisSubtask();this.metaClient = StreamerUtil.createMetaClient(this.config);this.writeClient = FlinkWriteClients.createWriteClient(this.config, getRuntimeContext());this.writeStatuses = new ArrayList<>();this.writeMetadataState = context.getOperatorStateStore().getListState(new ListStateDescriptor<>("write-metadata-state",TypeInformation.of(WriteMetadataEvent.class)));this.ckpMetadata = CkpMetadata.getInstance(this.metaClient.getFs(), this.metaClient.getBasePath());this.currentInstant = lastPendingInstant();if (context.isRestored()) {restoreWriteMetadata();} else {sendBootstrapEvent();}// blocks flushing until the coordinator starts a new instantthis.confirming = true;}@Overridepublic void open(Configuration parameters) throws IOException {this.tracer = new TotalSizeTracer(this.config);initBuffer();initWriteFunction();}@Overridepublic void snapshotState(FunctionSnapshotContext functionSnapshotContext) throws Exception {if (inputEnded) {return;}snapshotState();// Reload the snapshot state as the current state.reloadWriteMetaState();}@Overridepublic void snapshotState() {// Based on the fact that the coordinator starts the checkpoint first,// it would check the validity.// wait for the buffer data flush out and request a new instantflushRemaining(false);}@Overridepublic void processElement(I value, ProcessFunction<I, Object>.Context ctx, Collector<Object> out) throws Exception {bufferRecord((HoodieRecord<?>) value);}
  • initializeState操作,主要是做一些初始化的操作

    • this.taskID = getRuntimeContext().getIndexOfThisSubtask();
      获取当前的task的索引下标,用来向operator coordinator发送event给operator coordinator,之后 StreamWriteOperatorCoordinator(operator coordinator) 进行处理,后续会说到StreamWriteOperatorCoordinator

    • metaClient = StreamerUtil.createMetaClient(this.config)
      writeClient = FlinkWriteClients.createWriteClient
      初始化hudi的元数据客户端(这里是HoodieTableMetaClient)和写入客户端(这里是HoodieFlinkWriteClient)

    • writeStatuses = new ArrayList<>()
      记录后续的写入hudi文件的信息

    • writeMetadataState = context.getOperatorStateStore().getListState
      记录写入hudi的元数据事件,会在后续的操作中,会包装成event发送给operator coordinator(StreamWriteOperatorCoordinator)

    • ckpMetadata = CkpMetadata.getInstance
      Flink的checkpoint的元数据信息路径,默认的路径是/${hoodie.basePath}/.hoodie/.aux/ckp_meta

    • currentInstant = lastPendingInstant()
      获取上次还没有完成的commit

    • restoreWriteMetadata或者sendBootstrapEvent,根据是否是从checkpoint恢复过来的进行不同消息的发送,
      这里的operator coordinator(StreamWriteOperatorCoordinator)会进行统一的处理,并初始化一个commit

  • open操作
    写入hudi前的前置操作,比如说 初始化TotalSizeTracer记录maxBufferSize便于flush操作
    根据write.operation的值(默认是upsert)选择后续的操作是insert或upsert或overwrite,这里是upsert

  • processElement操作
    这里对传入的HoodieRecord进行缓存,主要是bufferRecord做的事情,

    • 首先会获取bucketID,之后再往对应的bucket中插入数据
    • 如果超出write.batch.size(默认是128MB),则会进行flushBucket操作,该操作主要是写入hudi操作 //TODO: 具体的写入hudi操作
      • 首先会获取新的需要提交的commit
      • 再进行写入的实际操作
      • 写入的文件元数据信息回传到operator coordinator进行统一处理
  • snapshotState 操作

    • 调用flushRemaining 写入剩下的数据到hudi存储中
    • 重新加载当前写入的hudi文件元数据信息到当前flink的state中

hudi StreamWriteOperatorCoordinator作用

总的来说,StreamWriteOperatorCoordinator扮演的角色和在Spark中driver的角色一样,都是来最后来提交 元数据信息到huid中。
具体的作用还是得从具体的方法来看:

  @Overridepublic void handleEventFromOperator(int i, OperatorEvent operatorEvent) {ValidationUtils.checkState(operatorEvent instanceof WriteMetadataEvent,"The coordinator can only handle WriteMetaEvent");WriteMetadataEvent event = (WriteMetadataEvent) operatorEvent;if (event.isEndInput()) {// handle end input event synchronously// wrap handleEndInputEvent in executeSync to preserve the order of eventsexecutor.executeSync(() -> handleEndInputEvent(event), "handle end input event for instant %s", this.instant);} else {executor.execute(() -> {if (event.isBootstrap()) {handleBootstrapEvent(event);} else {handleWriteMetaEvent(event);}}, "handle write metadata event for instant %s", this.instant);}}...@Overridepublic void notifyCheckpointComplete(long checkpointId) {executor.execute(() -> {// The executor thread inherits the classloader of the #notifyCheckpointComplete// caller, which is a AppClassLoader.Thread.currentThread().setContextClassLoader(getClass().getClassLoader());// for streaming mode, commits the ever received events anyway,// the stream write task snapshot and flush the data buffer synchronously in sequence,// so a successful checkpoint subsumes the old one(follows the checkpoint subsuming contract)final boolean committed = commitInstant(this.instant, checkpointId);if (tableState.scheduleCompaction) {// if async compaction is on, schedule the compactionCompactionUtil.scheduleCompaction(metaClient, writeClient, tableState.isDeltaTimeCompaction, committed);}if (tableState.scheduleClustering) {// if async clustering is on, schedule the clusteringClusteringUtil.scheduleClustering(conf, writeClient, committed);}if (committed) {// start new instant.startInstant();// sync Hive if is enabledsyncHiveAsync();}}, "commits the instant %s", this.instant);}
  • handleEventFromOperator方法用来接受task发送的消息

    • 对于BootStrap类型的WriteMetadataEvent(在StreamWriteFunction方法initializeState中),相当于函数初始化也就会触发
      该类型的消息由handleBootstrapEvent来处理(我们这里假设每个任务operator都完成了初始化的操作),对应的数据流如下:

      initInstant||\/
      reset => startInstant
      

      startInstant 这里就会初始化一个hudi写操作的commit信息

    • 对于一般的write的信息的event,(比如说在processElement的flushBucket函数中),由handleWriteMetaEvent来处理:

       if (this.eventBuffer[event.getTaskID()] != null) {this.eventBuffer[event.getTaskID()].mergeWith(event);} else {this.eventBuffer[event.getTaskID()] = event;}
      

      这里只是加到变量名为eventBuffer 的WriteMetadataEvent类型的数组中,后续中会进行处理

    • 对于isEndInputtrue的event,这种一般source是基于文件的这种,这里先不讨论

  • notifyCheckpointComplete 当对应的checkpointId完成以后,该方法会被调用

    • commitInstant 提交hudi元数据,如果如果有发生异常,则回滚当前hudi对应的commit
    • scheduleCompaction && scheduleClustering 进行hui的CompcationClustering
    • 如果成功的提交了,则会开启一个新的commit,如果开了hive同步(hive_sync.enabled默认为false),则会同步元数据信息到hive

总结

用一张图总结一下交互方式,如下:
在这里插入图片描述

相关文章:

Apache Hudi初探(二)(与flink的结合)--flink写hudi的操作(JobManager端的提交操作)

背景 在Apache Hudi初探(一)(与flink的结合)中&#xff0c;我们提到了Pipelines.hoodieStreamWrite 写hudi文件,这个操作真正写hudi是在Pipelines.hoodieStreamWrite方法下的transform(opName("stream_write", conf), TypeInformation.of(Object.class), operatorFa…...

Office ---- excel ---- 怎么批量设置行高

解决方法&#xff1a; 调整行高即可...

Wlan——STA上线流程与802.11MAC帧讲解

目录 802.11MAC帧基本概念 802.11帧结构 802.11MAC帧的分类 管理帧 控制帧 数据帧 STA接入无线网络流程 信号扫描—管理帧 链路认证—管理帧 用户关联—管理帧 用户上线 802.11MAC帧基本概念 802.11协议在802家族中的角色位置 其中802.3标准属于以太网的一种帧格式…...

HTTP的并发连接限制和连接线程池

为什么有并发连接限制和连接线程池 大量的客户端连接到服务器&#xff0c;会导致服务器端需要大量的维护连接资源&#xff0c;同时需要处理客户端的请求&#xff0c;这是如何高效的执行任务成了一个关键的问题&#xff0c;所以&#xff0c;并发连接限制和连接线程池的出现就是…...

【从零学习python 】45.Python中的类方法和静态方法

文章目录 类方法、静态方法类方法静态方法使用场景 进阶案例 类方法、静态方法 类方法 类方法是以类对象作为第一个参数的方法。需要使用装饰器classmethod来标识其为类方法。对于类方法&#xff0c;第一个参数必须是类对象&#xff0c;一般以cls作为第一个参数。 class Dog…...

基于 VisualFoxPro 环境开发应用程序的过程

应用程序开发前开发者要与用户之间广泛沟通&#xff0c;作大量的调查研究和分析工 作&#xff0c;从而明确用户的要求、程序应具备的功能及可以完成的任务。为此要进行两方 面的分析&#xff0c;数据分析和功能分析。数据分析的目的是收集系统应包含的数据、数据 的真实性、…...

SpringBoot整合Quartz,实现数据库方式执行定时任务

springboot整合quartz&#xff0c;实现数据库方式执行定时任务。把定时任务信息存进数据库&#xff0c;项目启动后自动执行定时任务。 1.引入依赖包&#xff1a; <dependency> <groupId>org.springframework.boot</groupId> <ar…...

java中多个list怎么用List表示?

如果你有多个List对象&#xff0c;想要将它们合并成一个List对象&#xff0c;可以使用addAll()方法来实现。addAll()方法将会把一个List中的元素逐个添加到另一个List中。 以下是一个示例&#xff0c;展示了如何将多个List对象合并为一个List对象&#xff1a; import java.ut…...

postgresql 数据排序

postgresql 常见操作 排序总结 排序 -- 排序的时候null是最大的值(看一下) select employee_id,manager_id from employeesorder by manager_id desc;-- nulls first使null值排在第一位 select employee_id,manager_id from employeesorder by manager_id nulls first;-- null…...

虚拟机 net、桥接、主机三种网络模式寻根问底

虚拟机使用物理主机上的网络适配器直接连接到物理网络中。 这意味着虚拟机就像是通过网线直接连接到路由器一样,成为物理网络中的一个独立设备。 虚拟机可以获取一个永久的IP地址,通过DHCP或手动设置。 虚拟机和物理主机都可以访问对方以及公共网络中的其他设备,比如文件服务…...

python代码——批量将PPT转换成长图

语言&#xff1a;python 3 用法&#xff1a;点击运行后&#xff0c;弹出窗口&#xff0c;选择文件夹&#xff0c;程序运行会将文件夹内的所有PPT文件全部转换成PPT长图&#xff0c;图片名称与PPT文件名称相同&#xff0c;保存位置相同。 如运行中报错&#xff0c;需要自行根据…...

C++信息学奥赛2046:【例5.15】替换字母

这段代码的功能是对输入的字符串进行处理&#xff0c;将字符串中的字符 a 替换为字符 b 后输出结果。 #include<bits/stdc.h> using namespace std; int main() {string s; // 定义字符串变量s&#xff0c;用来存储输入的字符串char a, b; // 定义字符变量a和b&#xff…...

每天一道leetcode:1306. 跳跃游戏 III(图论中等广度优先遍历)

今日份题目&#xff1a; 这里有一个非负整数数组 arr&#xff0c;你最开始位于该数组的起始下标 start 处。当你位于下标 i 处时&#xff0c;你可以跳到 i arr[i] 或者 i - arr[i]。 请你判断自己是否能够跳到对应元素值为 0 的 **任一** 下标处。 注意&#xff0c;不管是什…...

76参考链接

参考链接 官方文件综合介绍[let 和 const](https://es6.ruanyifeng.com/#docs/reference#let 和 const)解构赋值字符串正则数值数组函数对象Symbol[Set 和 Map](https://es6.ruanyifeng.com/#docs/reference#Set 和 Map)[Proxy 和 Reflect](https://es6.ruanyifeng.com/#docs/…...

浅析Linux SCSI子系统:调试方法

文章目录 SCSI日志调试功能scsi_logging_level调整SCSI日志等级 SCSI trace events使能SCSI trace events方式一&#xff1a;通过set_event接口方式二&#xff1a;通过enable 跟踪trace信息 相关参考 SCSI日志调试功能 SCSI子系统支持内核选项CONFIG_SCSI_LOGGING配置日志调试…...

【Unity3D】水面特效

1 前言 水波特效 中通过屏幕后处理实现了环形水波效果&#xff0c;本文通过 Shader Graph 实现了模拟水面特效&#xff0c;包含以下特效细节。 深水区和浅水区颜色差异&#xff1b;水面有波纹&#xff0c;并且在移动&#xff1b;水面起伏波动&#xff1b;水面边缘有水泡&#…...

CSS中的flex布局详细讲解

Flex 布局 Flex 布局是一种现代的 CSS 布局模型&#xff0c;用于实现灵活的盒子布局。它提供了强大的布局能力&#xff0c;使得元素可以自动调整大小、对齐和分布&#xff0c;适用于构建响应式和可伸缩的布局。 Flex 布局使用 flex 容器和 flex 项目的概念。容器是一个父元素…...

Python功能制作之简单的音乐播放器

需要导入的库&#xff1a; pip install PyQt5 源码&#xff1a; import os from PyQt5.QtCore import Qt, QUrl from PyQt5.QtGui import QIcon, QPixmap from PyQt5.QtMultimedia import QMediaPlayer, QMediaContent from PyQt5.QtWidgets import QApplication, QMainWind…...

GAN生成对抗模型根据minist数据集生成手写数字图片

文章目录 1.项目介绍2相关网站3具体的代码及结果导入工具包设置超参数定义优化器&#xff0c;以及损失函数训练时的迭代过程训练结果的展示 1.项目介绍 通过用minist数据集进行训练&#xff0c;得到一个GAN模型&#xff0c;可以生成与minist数据集类似的图片。 GAN是一种生成模…...

【K8S源码之Pod漂移】整体概况分析 controller-manager 中的 nodelifecycle controller(Pod的驱逐)

参考 k8s 污点驱逐详解-源码分析 - 掘金 k8s驱逐篇(5)-kube-controller-manager驱逐 - 良凯尔 - 博客园 k8s驱逐篇(6)-kube-controller-manager驱逐-NodeLifecycleController源码分析 - 良凯尔 - 博客园 k8s驱逐篇(7)-kube-controller-manager驱逐-taintManager源码分析 - 良…...

OpenLayers 可视化之热力图

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 热力图&#xff08;Heatmap&#xff09;又叫热点图&#xff0c;是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

前端开发面试题总结-JavaScript篇(一)

文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包&#xff08;Closure&#xff09;&#xff1f;闭包有什么应用场景和潜在问题&#xff1f;2.解释 JavaScript 的作用域链&#xff08;Scope Chain&#xff09; 二、原型与继承3.原型链是什么&#xff1f;如何实现继承&a…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

Java求职者面试指南:计算机基础与源码原理深度解析

Java求职者面试指南&#xff1a;计算机基础与源码原理深度解析 第一轮提问&#xff1a;基础概念问题 1. 请解释什么是进程和线程的区别&#xff1f; 面试官&#xff1a;进程是程序的一次执行过程&#xff0c;是系统进行资源分配和调度的基本单位&#xff1b;而线程是进程中的…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

云原生安全实战:API网关Envoy的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口&#xff0c;负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...

LangChain【6】之输出解析器:结构化LLM响应的关键工具

文章目录 一 LangChain输出解析器概述1.1 什么是输出解析器&#xff1f;1.2 主要功能与工作原理1.3 常用解析器类型 二 主要输出解析器类型2.1 Pydantic/Json输出解析器2.2 结构化输出解析器2.3 列表解析器2.4 日期解析器2.5 Json输出解析器2.6 xml输出解析器 三 高级使用技巧3…...