[NLP]LLM--transformer模型的参数量
1. 前言
最近,OpenAI推出的ChatGPT展现出了卓越的性能,引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面:模型参数规模大,训练数据规模大。以GPT3为例,GPT3的参数量为1750亿,训练数据量达到了570GB。进而,训练大规模语言模型面临两个主要挑战:显存效率和计算效率。
现在业界的大语言模型都是基于transformer模型的,模型结构主要有两大类:encoder-decoder(代表模型是T5)和decoder-only,具体的,decoder-only结构又可以分为Causal LM(代表模型是GPT系列)和Prefix LM(代表模型是GLM)。归因于GPT系列取得的巨大成功,大多数的主流大语言模型都采用Causal LM结构。因此,针对decoder-only框架,为了更好地理解训练训练大语言模型的显存效率和计算效率.
完整的Transformer模型包括encoder和decoder,而GPT只使用了decoder部分,且因为少了encoder,所以和原始的Transformer decoder相比,不再需要encoder-decoder attention层,对比图如下:
本文分析采用decoder-only框架transformer模型的模型参数量、计算量、中间激活值、KV cache。
`
为了方便分析,先定义好一些数学符号。记transformer模型的层数为 L ,隐藏层维度为 h ,注意力头数为 a。词表大小为 V,训练数据的批次大小为 b ,序列长度为 s。
2. 模型参数量
可以参考:[NLP] BERT模型参数量_奇思闻影的舒克与贝克的博客-CSDN博客
基本方法一样
transformer模型由 L个相同的层组成,每个层分为两部分:self-attention块和MLP块。
Self-attention模块参数包含Q, K V 的权重矩阵Wq, Wk, Wv 输出及偏置Bias,4个权重矩阵形状为[h, h],4个偏置形状为[h], Self-attention参数量为4 + 4h
MLP块由2个线性层组成,一般地,第一个线性层是先将维度从 h 映射到 4h ,第二个线性层再将维度从4h映射到h。第一个线性层的权重矩阵 W1 的形状为 [h,4h] ,偏置的形状为 [4h] 。第二个线性层权重矩阵 W2 的形状为 [4h,h] ,偏置形状为 [h] 。MLP块的参数量为 8 + 5h
self-attention块和MLP块各有一个layer normalization,包含了2个可训练模型参数:缩放参数 gaama和平移参数 beta ,形状都是 [h] 。2个layer normalization的参数量为 4h 。
总的,每个transformer层的参数量为12 + 13h
除此之外,词嵌入矩阵的参数量也较多,词向量维度通常等于隐藏层维度 h ,词嵌入矩阵的参数量为 Vh 。最后的输出层的权重矩阵通常与词嵌入矩阵是参数共享的。
关于位置编码,如果采用可训练式的位置编码,会有一些可训练模型参数,数量比较少。如果采用相对位置编码,例如RoPE和ALiBi,则不包含可训练的模型参数。我们忽略这部分参数。
综上, L层transformer模型的可训练模型参数量为 L(12 + 13h)+Vh 。当隐藏维度 h 较大时,可以忽略一次项,模型参数量近似为 12L
接下来,我们估计不同版本LLaMA模型的参数量。
实际参数量 | 隐藏维度h | 层数l | 12L |
---|---|---|---|
6.7B | 4096 | 32 | 6,442,450,944 |
13.0B | 5120 | 40 | 12,582,912,000 |
32.5B | 6656 | 60 | 31,897,681,920 |
65.2B | 8192 | 80 | 64,424,509,440 |
特此声明,此文主体参考知乎文章https://zhuanlan.zhihu.com/p/624740065(在此感该作者“回旋托马斯x”的辛苦付出)
参考
[1] https://arxiv.org/pdf/1706.03762.pdf
[2] https://arxiv.org/pdf/2302.13971.pdf
[3] https://arxiv.org/pdf/2104.04473.pdf
[4] https://zhuanlan.zhihu.com/p/624740065
相关文章:
[NLP]LLM--transformer模型的参数量
1. 前言 最近,OpenAI推出的ChatGPT展现出了卓越的性能,引发了大规模语言模型(Large Language Model, LLM)的研究热潮。大规模语言模型的“大”体现在两个方面:模型参数规模大,训练数据规模大。以GPT3为例,GPT3的参数量…...
5 Python的面向对象编程
概述 在上一节,我们介绍了Python的函数,包括:函数的定义、函数的调用、参数的传递、lambda函数等内容。在本节中,我们将介绍Python的面向对象编程。面向对象编程(Object-Oriented Programming, 即OOP)是一种…...

卷积神经网络——上篇【深度学习】【PyTorch】【d2l】
文章目录 5、卷积神经网络5.1、卷积5.1.1、理论部分5.1.2、代码实现5.1.3、边缘检测 5.2、填充和步幅5.2.1、理论部分5.2.2、代码实现 5.3、多输入多输出通道5.3.1、理论部分5.3.2、代码实现 5.4、池化层 | 汇聚层5.4.1、理论部分5.4.2、代码实现 5、卷积神经网络 5.1、卷积 …...
【从零学习python 】54. 内存中写入数据
文章目录 内存中写入数据StringIOBytesIO进阶案例 内存中写入数据 除了将数据写入到一个文件以外,我们还可以使用代码,将数据暂时写入到内存里,可以理解为数据缓冲区。Python中提供了StringIO和BytesIO这两个类将字符串数据和二进制数据写入…...

速通蓝桥杯嵌入式省一教程:(九)AT24C02芯片(E2PROM存储器)读写操作与I2C协议
AT24C02芯片(又叫E2PROM存储器、EEPROM存储器),是一种通过I2C(IIC)协议通信的掉电保存存储器芯片,其内部含有256个8位字节。在介绍这款芯片之前,我们先来粗略了解一下I2C协议。 I2C总线是一种双向二线制的同步串行总线…...
负载均衡:优化性能与可靠性的关键
在现代互联网时代,数以万计的用户访问着各种在线服务,从即时通讯、社交媒体到电子商务和媒体流媒体,无不需要应对海量的请求和数据传输。在这个高并发的环境下,负载均衡成为了关键的技术,它旨在分散工作负载࿰…...

T113-S3-TCA6424-gpio扩展芯片调试
目录 前言 一、TCA6424介绍 二、原理图连接 三、设备树配置 四、内核配置 五、gpio操作 总结 前言 TCA6424是一款常用的GPIO(通用输入输出)扩展芯片,可以扩展微控制器的IO口数量。在T113-S3平台上,使用TCA6424作为GPIO扩展芯…...

奥威BI数据可视化工具:个性化定制,打造独特大屏
每个人都有自己独特的审美,因此即使是做可视化大屏,也有很多人希望做出不一样的报表,用以缓解审美疲劳的同时提高报表浏览效率。因此这也催生出了数据可视化工具的个性化可视化大屏制作需求。 奥威BI数据可视化工具:个性化定制&a…...
13 秒插入 30 万条数据,批量插入!
数据库表 CREATE TABLE t_user (id int(11) NOT NULL AUTO_INCREMENT COMMENT 用户id,username varchar(64) DEFAULT NULL COMMENT 用户名称,age int(4) DEFAULT NULL COMMENT 年龄,PRIMARY KEY (id) ) ENGINEInnoDB DEFAULT CHARSETutf8 COMMENT用户信息表; User实体 /*** …...

Nginx代理转发地址不正确问题
使用ngix前缀去代理转发一个地址,貌似成功了,但是进不到正确的页面,能够访问,但是一直404远处出来nginx会自动拼接地址在后面 后面才知道要将这段代码加上去,去除前缀转发...

HyperMotion高度自动化云迁移至华为HCS8.1解决方案
项目背景 2020 年以来,金融证券已经成为信创落地最快的领域。2021 年证监会发布的《证券期货业科技发展十四五规划》中,将“加强信创规划与实施”作为证券行业重点建设任务之一。为了符合国家信创标准,某证券企业计划将网管系统、呼叫中心管…...

pbootcms系统安全防护设置大全
PbootCMS系统简介 PbootCMS是全新内核且永久开源免费的PHP企业网站开发建设管理系统,是一套高效、简洁、 强悍的可免费商用的PHP CMS源码,能够满足各类企业网站开发建设的需要。系统采用简单到想哭的模板标签,只要懂HTML就可快速开发企业网站…...
【环境】docker时间与宿主同步
1.容器创建后 docker cp /etc/localtime 容器名:/etc/2.容器创建时 加入 -v /ect/localtime/:/etc/localtime:ro参考链接...
亮点!视频云存储/安防监控视频智能分析平台睡岗离岗检测
在生产过程中,未经领导允许的擅自离岗、睡岗会带来很多的潜在危害。TSINGSEE青犀推出的视频云存储/安防监控视频智能分析平台得睡岗离岗检测根据AI视频分析技术建立人工智能算法,对视频画面展开分析与识别。自动识别出人员睡岗、离岗、玩手机与抽烟等动作…...

编程锦囊妙计——快速创建本地Mock服务
点击上方👆蓝色“Agilean”,发现更多精彩。 前情提要 在本系列上一篇文章《全文干货:打破前后端数据传递鸿沟,高效联调秘笈》中我们分享了使用Zod这一运行时类型校验库来对后端服务响应结果进行验证达到增加项目质量的方式。 这次…...

简单认识镜像底层原理详解和基于Docker file创建镜像
文章目录 一、镜像底层原理1.联合文件系统(UnionFS)2.镜像加载原理3.为什么Docker里的centos的大小才200M? 二、Dockerfile1.简介2.Dockerfile操作常用命令 三、创建Docker镜像1.基于已有镜像创建2.基于本地模板创建3.基于Dockerfile创建4.Dockerfile多阶段构建镜像 一、镜像底…...

加速乐(__jsl_clearance_s)动态cookie生成分析实战
文章目录 一、写在前面二、抓包分析三、逆向分析 一、写在前面 加速乐(JSL)是阿里推出的一项反爬虫服务,其生成cookie的原理基于浏览器的行为特征 我们知道普通网站生成cookie是在请求时生成,而它先生成cookie,然后向服…...

启动Vue项目踩坑记录
前言 在启动自己的Vue项目时,遇到一些报错,当时很懵,解决了以后豁然开朗,特写此博客记录一下。 一、<template>里多加了个div标签 [vite] Internal server error: At least one <template> or <script> is req…...
vue-pc上传优化-uni-app上传优化
vue-pc上传优化 当我们使用自己搭建的文档服务器上传图片时候,在本地没问题,上线上传会比较慢 这时候我们最简单的方法就是写一个加载组件,上传之前打开组件,掉完接口关闭组件 或者不想写直接使用element的loading写一个遮罩层加…...

【计算机视觉|生成对抗】StackGAN:使用堆叠生成对抗网络进行文本到照片逼真图像合成
本系列博文为深度学习/计算机视觉论文笔记,转载请注明出处 标题:StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 链接:[1612.03242] StackGAN: Text to Photo-realistic Image Synthesis…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...

如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...