Pytorch建立MyDataLoader过程详解
简介
torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=None, persistent_workers=False, pin_memory_device=‘’)
详细:DataLoader
自己基于DataLoader实现各个模块
代码实现
MyDataset基于torch中的Data实现对个人数据集的载入,例如图像和标签载入
SingleSampler基于torch中的Sampler实现对于数据的batch个数图像的载入,例如,Batch_Size=4,实现对所有数据中选取4个索引作为一组,然后在MyDataset中基于__getitem__根据图像索引去进行图像操作
MyBathcSampler基于torch的BatchSampler实现自己对于batch_size数据的处理。需要基于SingleSampler实现Sampler的处理,更为灵活。MyBatchSampler的存在会自动覆盖DataLoader中的batch_size参数
注:Sampler的实现,将会与shuffer冲突,shuffer是在没有实现sampler前提下去自动判断选择的sampler类型
collate_fn是实现将batch_size的图像数据进行打包,遍历过程中就可以实现batch_size的images和labels对应

sampler
from typing import Iterator, List
import torch
from torch.utils.data import BatchSampler
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.utils.data import Samplerclass MyDataset(Dataset):def __init__(self) -> None:self.data = torch.arange(20)def __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index]@staticmethoddef collate_fn(batch):return torch.stack(batch, 0)class MyBatchSampler(BatchSampler):def __init__(self, sampler: Sampler[int], batch_size: int) -> None:self._sampler = samplerself._batch_size = batch_sizedef __iter__(self) -> Iterator[List[int]]:batch = []for idx in self._sampler:batch.append(idx)if len(batch) == self._batch_size:yield batchbatch = []yield batchdef __len__(self):return len(self._sampler) // self._batch_sizeclass SingleSampler(Sampler):def __init__(self, data_source) -> None:self._data = data_sourceself.num_samples = len(self._data)def __iter__(self):# 顺序采样# indices = range(len(self._data))# 随机采样indices = torch.randperm(self.num_samples).tolist()return iter(indices)def __len__(self):return self.num_samplestrain_set = MyDataset()
single_sampler = SingleSampler(train_set)
batch_sampler = MyBatchSampler(single_sampler, 8)
train_loader = DataLoader(train_set, batch_size=4, sampler=single_sampler, pin_memory=True, collate_fn=MyDataset.collate_fn)
for data in train_loader:print(data)
batch_sampler
from typing import Iterator, List
import torch
from torch.utils.data import BatchSampler
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torch.utils.data import Samplerclass MyDataset(Dataset):def __init__(self) -> None:self.data = torch.arange(20)def __len__(self):return len(self.data)def __getitem__(self, index):return self.data[index]@staticmethoddef collate_fn(batch):return torch.stack(batch, 0)class MyBatchSampler(BatchSampler):def __init__(self, sampler: Sampler[int], batch_size: int) -> None:self._sampler = samplerself._batch_size = batch_sizedef __iter__(self) -> Iterator[List[int]]:batch = []for idx in self._sampler:batch.append(idx)if len(batch) == self._batch_size:yield batchbatch = []yield batchdef __len__(self):return len(self._sampler) // self._batch_sizeclass SingleSampler(Sampler):def __init__(self, data_source) -> None:self._data = data_sourceself.num_samples = len(self._data)def __iter__(self):# 顺序采样# indices = range(len(self._data))# 随机采样indices = torch.randperm(self.num_samples).tolist()return iter(indices)def __len__(self):return self.num_samplestrain_set = MyDataset()
single_sampler = SingleSampler(train_set)
batch_sampler = MyBatchSampler(single_sampler, 8)
train_loader = DataLoader(train_set, batch_sampler=batch_sampler, pin_memory=True, collate_fn=MyDataset.collate_fn)
for data in train_loader:print(data)
参考
Sampler:https://blog.csdn.net/lidc1004/article/details/115005612
相关文章:
Pytorch建立MyDataLoader过程详解
简介 torch.utils.data.DataLoader(dataset, batch_size1, shuffleNone, samplerNone, batch_samplerNone, num_workers0, collate_fnNone, pin_memoryFalse, drop_lastFalse, timeout0, worker_init_fnNone, multiprocessing_contextNone, generatorNone, *, prefetch_factorN…...
十问华为云 Toolkit:开发插件如何提升云上开发效能
众所周知,桌面集成开发环境(IDE)已经融入到开发的各个环节,对开发者的重要性和广泛度是不言而喻的,而开发插件更是建立在IDE基础上的功能Buff。 Huawei Cloud ToolKit作为华为云围绕其产品能力向开发者桌面上的延伸&a…...
NO.06 自定义映射resultMap
1、前言 在之前的博客中,实体类的属性名和数据库表的字段名是一致的,因此能正确地查询出所需要的数据。当实体类的属性名与数据库表的字段名不一致时,会导致查询出来的数据为空指针。要解决这个问题就需要使用resultMap自定义映射。 使用的…...
国产精品:讯飞星火最新大模型V2.0
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。…...
网络综合布线实训室方案(2023版)
综合布线实训室概述 随着智慧城市的蓬勃发展,人工智能、物联网、云计算、大数据等新兴行业也随之崛起,网络布线系统作为现代智慧城市、智慧社区、智能建筑、智能家居、智能工厂和现代服务业的基础设施和神经网络,发挥着重要作用。实践表明,网络系统故障的70%发生在布线系统,直接…...
Qt应用开发(基础篇)——文本编辑窗口 QTextEdit
一、前言 QTextEdit类继承于QAbstractScrollArea,QAbstractScrollArea继承于QFrame,用来显示富文本和纯文本的窗口部件。 框架类 QFramehttps://blog.csdn.net/u014491932/article/details/132188655滚屏区域基类 QAbstractScrollAreahttps://blog.csdn…...
NineData中标移动云数据库传输项目(2023)
近日,玖章算术NineData智能数据管理平台成功中标《2023年移动云数据库传输服务软件项目》,中标金额为406万。这标志着玖章算术NineData平台已成功落地顶级运营商行业,并在数据管理方面实现了大规模应用实践。 NineData中标2023移动云数据库传…...
Java面向对象三大特性之多态及综合练习
1.1 多态的形式 多态是继封装、继承之后,面向对象的第三大特性。 多态是出现在继承或者实现关系中的。 多态体现的格式: 父类类型 变量名 new 子类/实现类构造器; 变量名.方法名(); 多态的前提:有继承关系,子类对象是可以赋…...
HTTPS 握手过程
HTTPS 握手过程 HTTP 通信的缺点 通信使用明文,内容可能被窃听(重要密码泄露)不验证通信方身份,有可能遭遇伪装(跨站点请求伪造)无法证明报文的完整性,有可能已遭篡改(运营商劫持) HTTPS 握手过程 客户端发起 HTTPS 请求 用户在浏览器里…...
docker之Consul环境的部署
目录 一.Docker consul的介绍 1.1template模板(更新) 1.2registrator(自动发现) 1.3agent(代理) 二.consul的工作原理 三.Consul的特性 四.Consul的使用场景 五.搭建Consul的集群 5.1需求 5.2部署consul 5.3主服务器[192.168.40.20] 5.4client部署&…...
服务机器人,正走向星辰大海
大数据产业创新服务媒体 ——聚焦数据 改变商业 国内机器人联盟(IFR)将机器人划分为工作机器人、服务机器人、特种机器人三类。服务机器人广泛应用于餐饮场景、酒店场景,早已构成一道靓丽的风景。行业数据显示, 作为服务机器人发…...
SciencePub学术 | 计算机及交叉类重点SCIE征稿中
SciencePub学术 刊源推荐: 计算机及交叉类重点SCIE征稿中!信息如下,录满为止: 一、期刊概况: 计算机土地类重点SCIE 【期刊简介】IF:1.0-1.5,JCR4区,中科院4区; 【版面类型】正刊…...
Java面试题--SpringCloud篇
一、Spring Cloud 1. 什么是微服务架构? 微服务架构就是将单体的应用程序分成多 个应用程序,这多个应用程序就成为微服 务,每个微服务运行在自己的进程中,并 使用轻量级的机制通信 这些服务围绕业务能力来分,并通过自…...
【linux】常用的互斥手段及实例简述
文章目录 10. 原子变量(atomic_t)20. 自旋锁(spinlock_t)21. 读写锁(rwlock_t)22. 顺序锁(seqlock_t) 10. 原子变量(atomic_t) 头文件 #include <linux/types.h> // -> <linuc/atomic.h> // -> <asm-generic/atomic64.h>结构体 /* 32bit */ typedef …...
STM32 F103C8T6学习笔记12:红外遥控—红外解码-位带操作
今日学习一下红外遥控的解码使用,红外遥控在日常生活必不可少,它的解码与使用也是学习单片机的一个小过程,我们将通过实践来实现它。 文章提供源码、测试工程下载、测试效果图。 目录 红外遥控原理: 红外遥控特点: …...
linux 环境收集core文件步骤
Linux环境下进程发生异常而挂掉,通常很难查找原因,但是一般Linux内核给我们提供的核心文件,记录了进程在崩溃时候的信息,在C语言类的大型项目中,有助于深入定位。其配置流程如下: 1 查看生成core文件开关是…...
Git企业开发控制理论和实操-从入门到深入(一)|为什么需要Git|Git的安装
前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总https://blog.csdn.net/yu_cblog/cate…...
上篇——税收大数据应用研究
财税是国家治理的基础和重要支柱,税收是国家治理体系的重要组成部分。我们如何利用税收数据深入挖掘包含的数据价值,在进行数据分析,提升税收治理效能,推进税收现代化。 1. 定义与特点 对于“大数据”(Big data&#…...
疲劳驾驶检测和识别4:C++实现疲劳驾驶检测和识别(含源码,可实时检测)
疲劳驾驶检测和识别4:C实现疲劳驾驶检测和识别(含源码,可实时检测) 目录 疲劳驾驶检测和识别4:C实现疲劳驾驶检测和识别(含源码,可实时检测) 1.疲劳驾驶检测和识别方法 2.人脸检测方法 3.疲劳驾驶识别模型(Python) …...
Android WakefulBroadcastReceiver的使用
WakefulBroadcastReceiver 是一种特殊类型的广播接收器,为应用创建和管理 PARTIAL_WAKE_LOCK 。 简单来说, WakefulBroadcastReceiver 是持有系统唤醒锁的 BroadcastReceiver ,用于执行需要保持CPU运转的场景。 注册 注册 Receiver &#…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
UE5 学习系列(三)创建和移动物体
这篇博客是该系列的第三篇,是在之前两篇博客的基础上展开,主要介绍如何在操作界面中创建和拖动物体,这篇博客跟随的视频链接如下: B 站视频:s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
微信小程序云开发平台MySQL的连接方式
注:微信小程序云开发平台指的是腾讯云开发 先给结论:微信小程序云开发平台的MySQL,无法通过获取数据库连接信息的方式进行连接,连接只能通过云开发的SDK连接,具体要参考官方文档: 为什么? 因为…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
NPOI Excel用OLE对象的形式插入文件附件以及插入图片
static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...
NPOI操作EXCEL文件 ——CAD C# 二次开发
缺点:dll.版本容易加载错误。CAD加载插件时,没有加载所有类库。插件运行过程中用到某个类库,会从CAD的安装目录找,找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库,就用插件程序加载进…...
破解路内监管盲区:免布线低位视频桩重塑停车管理新标准
城市路内停车管理常因行道树遮挡、高位设备盲区等问题,导致车牌识别率低、逃费率高,传统模式在复杂路段束手无策。免布线低位视频桩凭借超低视角部署与智能算法,正成为破局关键。该设备安装于车位侧方0.5-0.7米高度,直接规避树枝遮…...
