当前位置: 首页 > news >正文

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

程序设计

  • 完整源码和数据获取方式1:私信博主回复SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  获取最优种群for j = 1 : SearchAgentsif(fitness_new(j) < GBestF)GBestF = fitness_new(j);GBestX = X_new(j, :);endend%%  更新种群和适应度值pop_new = X_new;fitness = fitness_new;%%  更新种群 [fitness, index] = sort(fitness);for j = 1 : SearchAgentspop_new(j, :) = pop_new(index(j), :);end%%  得到优化曲线curve(i) = GBestF;avcurve(i) = sum(curve) / length(curve);
end%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam'MaxEpochs', 20, ...                              % 最大训练次数'GradientThreshold', 1, ...                       % 梯度阈值'InitialLearnRate', InitialLearnRate, ...         % 初始学习率'LearnRateSchedule', 'piecewise', ...             % 学习率调整'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率'LearnRateDropFactor',0.2, ...                    % 学习率调整因子'L2Regularization', L2Regularization, ...         % 正则化参数'ExecutionEnvironment', 'gpu',...                 % 训练环境'Verbose', 0, ...                                 % 关闭优化过程'SequenceLength',1,...'MiniBatchSize',10,...'Plots', 'training-progress');                    % 画出曲线

学习总结

该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关文章:

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测 目录 时序预测 | MATLAB实现SO-CNN-LSTM蛇群算法优化卷积长短期记忆神经网络时间序列预测预测效果基本介绍程序设计学习总结参考资料 预测效果 基本介绍 时序预测 | MATLAB实现SO-CNN-LSTM蛇群…...

前端开发,怎么解决浏览器兼容性问题? - 易智编译EaseEditing

解决浏览器兼容性问题是前端开发中常见的挑战之一。不同的浏览器可能对网页元素的渲染和功能支持有所不同&#xff0c;因此需要采取一些策略来确保您的网页在不同浏览器上都能正常运行和呈现。以下是一些解决浏览器兼容性问题的方法和策略&#xff1a; 使用CSS Reset&#xff…...

树莓派3B安装64位操作系统

树莓派3B安装Ubuntu MATE_树莓派3b 安装ubuntu_雨田大大的博客-CSDN博客https://blog.csdn.net/lsjackson13/article/details/92423694?utm_mediumdistribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-92423694-blog-80716098.235%5Ev38%5Ep…...

Mysql系列 - 第2天:详解mysql数据类型(重点)

这是mysql系列第2篇文章。 环境&#xff1a;mysql5.7.25&#xff0c;cmd命令中进行演示。 主要内容 介绍mysql中常用的数据类型 mysql类型和java类型对应关系 数据类型选择的一些建议 MySQL的数据类型 主要包括以下五大类 整数类型&#xff1a;bit、bool、tinyint、smal…...

Linux常用的运维命令

1.查看进程按内存从大到小排序 ps -e -o "%C:%p:%z:%a"|sort -k5 -nr2.查看磁盘和分区信息 # 查看挂接的分区状态mount | column -t# 查看所有分区 fdisk -l# 查看所有交换分区 swapon -s3.查看网络信息 ifconfig # 查看所有网络接口的属性iptables -L…...

【从零学习python 】50.面向对象编程中的多态应用

文章目录 多态场景代码实现多态总结 进阶案例 多态 面向对象的三大特性&#xff1a; 封装&#xff1a;这是定义类的准则&#xff0c;根据对象的特点&#xff0c;将行为和属性抽象出来&#xff0c;封装到一个类中。继承&#xff1a;这是设计类的技巧。父类与子类&#xff0c;主…...

实现Token刷新机制

问题场景&#xff1a; 开发的项目中&#xff0c;如果正在项目中编辑信息&#xff0c;编辑信息的时间的过程中token失效可能导致信息丢失怎么办? 一、解决方法 实现Token刷新机制&#xff1a;客户端定时刷新token&#xff0c;当用户的token即将过期时&#xff0c;可以向服务器…...

FlaUi输入账号密码

FlaUI是一个用于自动化Windows桌面应用程序的开源UI自动化库&#xff0c;通常用于自动化Windows应用程序的测试和操作。如果你想使用FlaUI来输入账号和密码&#xff0c;你需要编写一些C#或其他支持.NET的编程代码来实现这一目标。以下是一个使用FlaUI来输入账号和密码的简单示例…...

ModStartBlog v8.0.0 博客归档页面,部分组件升级

ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用&#xff0c;支持后台一键快速安装&#xff0c;让开发者能快的实现业务功能开发。 系统完全开源&#xff0c;基于 Apache 2.0 开源协议。 功能特性 丰富的模块市场&#xff0c;后台一键快速安装会…...

使用 PyTorch 进行高效图像分割:第 4 部分

一、说明 在这个由 4 部分组成的系列中&#xff0c;我们将使用 PyTorch 中的深度学习技术从头开始逐步实现图像分割。本部分将重点介绍如何实现基于视觉转换器的图像分割模型。 图 1&#xff1a;使用视觉转换器模型架构运行图像分割的结果。 从上到下&#xff0c;输入图像、地面…...

西班牙卡瓦起泡酒的风味搭配

卡瓦是一种对食物友好的西班牙起泡酒&#xff0c;它的制作方法和香槟一样&#xff0c;可以和类似的食物搭配。卡瓦食物搭配包括各种食物&#xff0c;从海鲜和鱼到火腿&#xff0c;以及不同类型的小吃&#xff0c;也可以将卡瓦酒与甜点、水果和奶酪搭配。 卡瓦酒是世界上最著名的…...

Java项目-苍穹外卖-Day05

文章目录 1. 新增套餐1.1 需求分析和设计1.2 代码实现1.2.1 DishController1.2.2 DishService1.2.3 DishServiceImpl1.2.4 DishMapper1.2.5 DishMapper.xml1.2.6 SetmealController1.2.7 SetmealService1.2.8 SetmealServiceImpl1.2.9 SetmealMapper1.2.10 SetmealMapper.xml1.…...

取模运算符在数组下标的应用

什么是取模运算符%&#xff1f; 定义&#xff1a; a mod b&#xff0c;设a、b属于正整数且b>0&#xff0c;如果q、r属于正整数满足aq*br&#xff0c;且0≤r<b&#xff0c;则定义&#xff1a; a mod b r 注意&#xff1a;取模运算符两侧的除数和被除数都是整数&#xff…...

Firefox(火狐),使用技巧汇总,问题处理

本文目的 说明火狐如何安装在C盘之外的盘&#xff0c;即定制安装路径。如何将同步功能切换到本地服务上。默认是国际服务器。安装在C盘之后如何解决&#xff0c;之前安装的扩展无法自动同步的问题。顺带讲解一下&#xff0c;火狐的一些比较好用的扩展。 安装路径定制 火狐目前…...

耐腐蚀高速数控针阀和多功能PID控制器在流量比率控制中的应用

摘要&#xff1a;在目前的流体比值混合控制系统中&#xff0c;普遍采用的是多通道闭环PID控制系统对各路流量进行准确控制后再进行混合&#xff0c;这种控制方式普遍存在的问题是对流量调节阀的响应速度、耐腐蚀性和线性度有很高要求。为此本文提出的第一个解决方案是采用NCNV系…...

C语言:选择+编程(每日一练Day6)

目录 ​编辑选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 题五&#xff1a; 编程题&#xff1a; 题一&#xff1a;至少是其他数字两倍的最大数 思路一&#xff1a; 思路二&#xff1a; 题二&#xff1a;两个数组的交集…...

微信小程序教学系列(8)

微信小程序教学系列 第八章&#xff1a;小程序国际化开发 欢迎来到第八章&#xff01;这一次我们要谈论的是小程序国际化开发。你可能会问&#xff0c;什么是国际化&#xff1f;简单来说&#xff0c;国际化就是让小程序能够适应不同的语言和地区&#xff0c;让用户们感受到更…...

情人节定制:HTML5 Canvas全屏七夕爱心表白特效

❤️ 前言 “这个世界乱糟糟的而你干干净净可以悬在我心上做太阳和月亮。”&#xff0c;七夕节表白日&#xff0c;你要错过吗&#xff1f;如果你言辞不善&#xff0c;羞于开口的话&#xff0c;可以使用 html5 canvas 制作浪漫的七夕爱心表白动画特效&#xff0c;全屏的爱心和…...

操作系统-笔记-第五章-输入输出管理

目录 五、第五章——输入输出管理 1、IO设备的概念和分类 &#xff08;1&#xff09;IO设备分类——使用特性 &#xff08;2&#xff09;IO设备分类——传输速率 &#xff08;3&#xff09;IO设备分类——信息交换&#xff08;块、字符&#xff09; 2、IO控制器 &#x…...

感觉自己效率不高吗?学习实现目标的六个关键步骤,让你做任何事都事半功倍!

概述 是否感觉自己效率不高?做任何事情都提不起来精神?开发的时候要完成的功能很多,却不知该如何下手去做?那么你通过这篇文章可以学习到六个完成工作和学习目标的关键步骤,只要简单重复这六个步骤,就可以很轻松的达到你想做到的任何目标。是不是感觉很神奇,我也是亲测…...

深度学习在微纳光子学中的应用

深度学习在微纳光子学中的主要应用方向 深度学习与微纳光子学的结合主要集中在以下几个方向&#xff1a; 逆向设计 通过神经网络快速预测微纳结构的光学响应&#xff0c;替代传统耗时的数值模拟方法。例如设计超表面、光子晶体等结构。 特征提取与优化 从复杂的光学数据中自…...

测试markdown--肇兴

day1&#xff1a; 1、去程&#xff1a;7:04 --11:32高铁 高铁右转上售票大厅2楼&#xff0c;穿过候车厅下一楼&#xff0c;上大巴车 &#xffe5;10/人 **2、到达&#xff1a;**12点多到达寨子&#xff0c;买门票&#xff0c;美团/抖音&#xff1a;&#xffe5;78人 3、中饭&a…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像&#xff08;比如分辨率3000*3000的图像&#xff09;的办法&#xff0c;尤其是想把内存中的裸数据&#xff08;只有图像的数据&#xff0c;不包…...

MyBatis中关于缓存的理解

MyBatis缓存 MyBatis系统当中默认定义两级缓存&#xff1a;一级缓存、二级缓存 默认情况下&#xff0c;只有一级缓存开启&#xff08;sqlSession级别的缓存&#xff09;二级缓存需要手动开启配置&#xff0c;需要局域namespace级别的缓存 一级缓存&#xff08;本地缓存&#…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...

Xela矩阵三轴触觉传感器的工作原理解析与应用场景

Xela矩阵三轴触觉传感器通过先进技术模拟人类触觉感知&#xff0c;帮助设备实现精确的力测量与位移监测。其核心功能基于磁性三维力测量与空间位移测量&#xff0c;能够捕捉多维触觉信息。该传感器的设计不仅提升了触觉感知的精度&#xff0c;还为机器人、医疗设备和制造业的智…...

[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG

TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码&#xff1a;HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...