当前位置: 首页 > news >正文

Pytorch-day07-模型保存与读取

PyTorch 模型保存&读取

  • 模型存储
  • 模型单卡存储&多卡存储
  • 模型单卡读取&多卡读取

1、模型存储

  • PyTorch存储模型主要采用pkl,pt,pth三种格式,就使用层面来说没有区别
  • PyTorch模型主要包含两个部分:模型结构和权重。其中模型是继承nn.Module的类,权重的数据结构是一个字典(key是层名,value是权重向量)
  • 存储也由此分为两种形式:存储整个模型(包括结构和权重)和只存储模型权重(推荐)。
import torch
from torchvision import models
model = models.resnet50(pretrained=True)
save_dir = './resnet50.pth'# 保存整个 模型结构+权重
torch.save(model, save_dir)
# 保存 模型权重
torch.save(model.state_dict, save_dir)# pt, pth和pkl三种数据格式均支持模型权重和整个模型的存储

2、模型单卡存储&多卡存储

  • PyTorch中将模型和数据放到GPU上有两种方式——.cuda()和.to(device)
  • 注:如果要使用多卡训练的话,需要对模型使用torch.nn.DataParallel

2.1、nn.DataParrallel

<CLASS torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)>
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-puyISgkD-1692613764220)(attachment:image.png)]

  • module即表示你定义的模型
  • device_ids表示你训练的device
  • output_device这个参数表示输出结果的device,而这最后一个参数output_device一般情况下是省略不写的,那么默认就是在device_ids[0]

注:因此一般情况下第一张显卡的内存使用占比会更多

import os
import torch
from torchvision import models
#单卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 如果是多卡改成类似0,1,2
model = model.cuda()  # 单卡
#print(model)
---------------------------------------------------------------------------RuntimeError                              Traceback (most recent call last)~\AppData\Local\Temp/ipykernel_7460/77570021.py in <module>1 import os2 os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 如果是多卡改成类似0,1,2
----> 3 model = model.cuda()  # 单卡D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in cuda(self, device)903             Module: self904         """
--> 905         return self._apply(lambda t: t.cuda(device))906 907     def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _apply(self, fn)795     def _apply(self, fn):796         for module in self.children():
--> 797             module._apply(fn)798 799         def compute_should_use_set_data(tensor, tensor_applied):D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _apply(self, fn)818             # `with torch.no_grad():`819             with torch.no_grad():
--> 820                 param_applied = fn(param)821             should_use_set_data = compute_should_use_set_data(param, param_applied)822             if should_use_set_data:D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in <lambda>(t)903             Module: self904         """
--> 905         return self._apply(lambda t: t.cuda(device))906 907     def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:D:\Users\xulele\Anaconda3\lib\site-packages\torch\cuda\__init__.py in _lazy_init()245         if 'CUDA_MODULE_LOADING' not in os.environ:246             os.environ['CUDA_MODULE_LOADING'] = 'LAZY'
--> 247         torch._C._cuda_init()248         # Some of the queued calls may reentrantly call _lazy_init();249         # we need to just return without initializing in that case.RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0G4NTv1z-1692613764220)(attachment:ed8eb711294e4c6e3e43690ddb2bf66.png)]

#多卡
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
model = torch.nn.DataParallel(model).cuda()  # 多卡
#print(model)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eHt1Dn8t-1692613764221)(attachment:image.png)]

2.3、单卡保存+单卡加载

os.environ['CUDA_VISIBLE_DEVICES'] = '0'   #这里替换成希望使用的GPU编号
model = models.resnet50(pretrained=True)
model.cuda()save_dir = 'resnet50.pt'   #保存路径# 保存+读取整个模型
torch.save(model, save_dir)
loaded_model = torch.load(save_dir)
loaded_model.cuda()# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)
# 先加载模型结构
loaded_model = models.resnet50()   
# 在加载模型权重
loaded_model.load_state_dict(torch.load(save_dir))
loaded_model.cuda()
---------------------------------------------------------------------------RuntimeError                              Traceback (most recent call last)~\AppData\Local\Temp/ipykernel_7460/585340704.py in <module>5 os.environ['CUDA_VISIBLE_DEVICES'] = '0'   #这里替换成希望使用的GPU编号6 model = models.resnet50(pretrained=True)
----> 7 model.cuda()8 9 save_dir = 'resnet50.pt'   #保存路径D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in cuda(self, device)903             Module: self904         """
--> 905         return self._apply(lambda t: t.cuda(device))906 907     def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _apply(self, fn)795     def _apply(self, fn):796         for module in self.children():
--> 797             module._apply(fn)798 799         def compute_should_use_set_data(tensor, tensor_applied):D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _apply(self, fn)818             # `with torch.no_grad():`819             with torch.no_grad():
--> 820                 param_applied = fn(param)821             should_use_set_data = compute_should_use_set_data(param, param_applied)822             if should_use_set_data:D:\Users\xulele\Anaconda3\lib\site-packages\torch\nn\modules\module.py in <lambda>(t)903             Module: self904         """
--> 905         return self._apply(lambda t: t.cuda(device))906 907     def ipu(self: T, device: Optional[Union[int, device]] = None) -> T:D:\Users\xulele\Anaconda3\lib\site-packages\torch\cuda\__init__.py in _lazy_init()245         if 'CUDA_MODULE_LOADING' not in os.environ:246             os.environ['CUDA_MODULE_LOADING'] = 'LAZY'
--> 247         torch._C._cuda_init()248         # Some of the queued calls may reentrantly call _lazy_init();249         # we need to just return without initializing in that case.RuntimeError: Found no NVIDIA driver on your system. Please check that you have an NVIDIA GPU and installed a driver from http://www.nvidia.com/Download/index.aspx

2.4、单卡保存+多卡加载


os.environ['CUDA_VISIBLE_DEVICES'] = '0'   #这里替换成希望使用的GPU编号
model = models.resnet50(pretrained=True)
model.cuda()# 保存+读取整个模型
torch.save(model, save_dir)os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'   #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir)
loaded_model = nn.DataParallel(loaded_model).cuda()# 保存+读取模型权重
torch.save(model.state_dict(), save_dir)os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'   #这里替换成希望使用的GPU编号
loaded_model = models.resnet50()   #注意这里需要对模型结构有定义
loaded_model.load_state_dict(torch.load(save_dir))
loaded_model = nn.DataParallel(loaded_model).cuda()

2.5、多卡保存+单卡加载

核心问题:如何去掉权重字典键名中的"module",以保证模型的统一性

  • 对于加载整个模型,直接提取模型的module属性即可
  • 对于加载模型权重,保存模型时保存模型的module属性对应的权重
os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'   #这里替换成希望使用的GPU编号model = models.resnet50(pretrained=True)
model = nn.DataParallel(model).cuda()# 保存+读取整个模型
torch.save(model, save_dir)os.environ['CUDA_VISIBLE_DEVICES'] = '0'   #这里替换成希望使用的GPU编号
loaded_model = torch.load(save_dir).module
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'   #这里替换成希望使用的GPU编号model = models.resnet50(pretrained=True)
model = nn.DataParallel(model).cuda()# 保存权重
torch.save(model.module.state_dict(), save_dir)#加载模型权重
os.environ['CUDA_VISIBLE_DEVICES'] = '0'   #这里替换成希望使用的GPU编号
loaded_model = models.resnet50()   #注意这里需要对模型结构有定义
loaded_model.load_state_dict(torch.load(save_dir))
loaded_model.cuda()

2.6、多卡保存+多卡加载

保存整个模型时会同时保存所使用的GPU id等信息,读取时若这些信息和当前使用的GPU信息不符则可能会报错或者程序不按预定状态运行。可能出现以下2个问题:

  • 1、读取整个模型再使用nn.DataParallel进行分布式训练设置,这种情况很可能会造成保存的整个模型中GPU id和读取环境下设置的GPU id不符,训练时数据所在device和模型所在device不一致而报错
  • 2、读取整个模型而不使用nn.DataParallel进行分布式训练设置,发现程序会自动使用设备的前n个GPU进行训练(n是保存的模型使用的GPU个数)。此时如果指定的GPU个数少于n,则会报错

建议方案:

  • 只模型权重,之后再使用nn.DataParallel进行分布式训练设置则没有问题
  • 因此多卡模式下建议使用权重的方式存储和读取模型
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2'   #这里替换成希望使用的GPU编号model = models.resnet50(pretrained=True)
model = nn.DataParallel(model).cuda()# 保存+读取模型权重,强烈建议!!
torch.save(model.state_dict(), save_dir)
#加载模型 权重
loaded_model = models.resnet50()   #注意这里需要对模型结构有定义
loaded_model.load_state_dict(torch.load(save_dir)))
loaded_model = nn.DataParallel(loaded_model).cuda()

建议

  • 不管是单卡保存还是多卡保存,建议以保存模型权重为主
  • 不管是单卡还是多卡,先load模型权重,再指定是多卡加载(nn.DataParallel)或单卡(cuda)
# 使用案例(截取片段代码)My_model.eval()
test_total_loss = 0
test_total_correct = 0
test_total_num = 0past_test_loss = 0 #上一轮的loss
save_model_step = 10 # 每10步保存一次modelfor iter,(images,labels) in enumerate(test_loader):images = images.to(device)labels = labels.to(device)outputs = My_model(images)loss = criterion(outputs,labels)test_total_correct += (outputs.argmax(1) == labels).sum().item()test_total_loss += loss.item()test_total_num += labels.shape[0]test_loss = test_total_loss / test_total_numprint("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100))# model saveif test_loss<past_test_loss:#保存模型权重torch.save(model.state_dict(), save_dir)#保存 模型权重+模型结构#torch.save(model, save_dir)if iter % save_model_step == 0:#保存模型权重torch.save(model.state_dict(), save_dir)#保存 模型权重+模型结构#torch.save(model, save_dir)past_test_loss = test_loss

单卡保存&单卡读取 案例

Google Colab:https://colab.research.google.com/drive/1hEOeqXYm4BfulY6d30QCI4HrFmCmmTQu?usp=sharing



相关文章:

Pytorch-day07-模型保存与读取

PyTorch 模型保存&读取 模型存储模型单卡存储&多卡存储模型单卡读取&多卡读取 1、模型存储 PyTorch存储模型主要采用pkl&#xff0c;pt&#xff0c;pth三种格式,就使用层面来说没有区别PyTorch模型主要包含两个部分&#xff1a;模型结构和权重。其中模型是继承n…...

【C语言每日一题】01. Hello, World!

题目来源&#xff1a;http://noi.openjudge.cn/ch0101/01/ 01. Hello, World! 总时间限制: 1000ms 内存限制: 65536kB 问题描述 对于大部分编程语言来说&#xff0c;编写一个能够输出“Hello, World!”的程序往往是最基本、最简单的。因此&#xff0c;这个程序常常作为一个初…...

arm: day8

1.中断实验&#xff1a;按键控制led灯 流程&#xff1a; key.h /*************************************************************************> File Name: include/key.h> Created Time: 2023年08月21日 星期一 17时03分20秒***************************************…...

k8s容器加入host解析字段

一、通过edit或path来修改 kubectl edit deploy /xxxxx. x-n cattle-system xxxxx为你的资源对象名称 二、添加字段 三、code hostAliases:- hostnames:- www.rancher.localip: 10.10.2.180...

浅谈开发过程中完善的注释的重要性

第一部分&#xff1a;引言 1.1 简述编程注释的定义和功能 编程注释是一种在源代码中添加的辅助性文字&#xff0c;它不参与编译或执行&#xff0c;但对于理解源代码起着至关重要的作用。注释可以简单地描述代码的功能&#xff0c;也可以详细地解释算法的工作原理、设计决策的…...

Docker 微服务实战

1. 通过IDEA新建一个普通微服务模块 1.1 建Module docker_boot 1.2 改写pom <?xml version"1.0" encoding"UTF-8"?><project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&…...

JupyterHub实战应用

一、JupyerHub jupyter notebook 是一个非常有用的工具&#xff0c;我们可以在浏览器中任意编辑调试我们的python代码&#xff0c;并且支持markdown 语法&#xff0c;可以说是科研利器。但是这种情况适合个人使用&#xff0c;也就是jupyter notebook以我们自己的主机作为服务器…...

【MySQL】视图

目录 一、什么是视图 二、视图的操作 2.1 创建视图 2.2 删除视图 三、视图规则和限制 一、什么是视图 视图是一个虚拟表&#xff0c;其内容由查询定义。同真实的表一样&#xff0c;视图包含一系列带有名称的列和行数据。视图的数据变化会影响到基表&#xff08;创建视图所…...

基于 Android 剧院购票APP的开发与设计

摘要&#xff1a;近年来&#xff0c;随着社会的发展和科技方面的创新&#xff0c;越来越多的人选择使用手机应用程序来购买剧场票。本文将探讨基于 Android 平台的剧院购票应用程序的开发和设计。该应用程序将为用户提供浏览剧场列表、查看剧场详情、选择座位并购买剧场票的功能…...

反转链表II

江湖一笑浪滔滔&#xff0c;红尘尽忘了 题目 示例 思路 链表这部分的题&#xff0c;不少都离不开单链表的反转&#xff0c;参考&#xff1a;反转一个单链表 这道题加上哨兵位的话会简单很多&#xff0c;如果不加的话&#xff0c;还需要分情况一下&#xff0c;像是从头节点开始…...

HTML 和 CSS 来实现毛玻璃效果(Glassmorphism)

毛玻璃效果简介 它的主要特征就是半透明的背景&#xff0c;以及阴影和边框。 同时还要为背景加上模糊效果&#xff0c;使得背景之后的元素根据自身内容产生漂亮的“变形”效果&#xff0c;示例&#xff1a; 代码实现 首先&#xff0c;创建一个 HTML 文件&#xff0c;写入如下…...

【技术】国标GB28181视频平台EasyGBS通过对应密钥上传到其他平台展示的详细步骤

国标GB28181协议视频平台EasyGBS是基于国标GB28181协议的视频云服务平台&#xff0c;支持多路设备同时接入&#xff0c;并对多平台、多终端分发出RTSP、RTMP、FLV、HLS、WebRTC等格式的视频流。平台可提供视频监控直播、云端录像、云存储、检索回放、智能告警、语音对讲、平台级…...

SpeedBI数据可视化工具:浏览器上做分析

SpeedBI数据分析云是一种在浏览器上进行数据可视化分析的工具&#xff0c;它能够将数据以可视化的形式呈现出来&#xff0c;并支持多种数据源和图表类型。 所有操作&#xff0c;均在浏览器上进行 在浏览器中打开SpeedBI数据分析云官网&#xff0c;点击【免费使用】进入&#…...

8.21笔记

Deeplab-MSc-LargrFOC 此图除了主输出之外&#xff0c;还有五个支线输出&#xff0c;他们池化层与VGG网络不同&#xff0c;其中卷积核大小是3&#xff0c;而VGG中卷积核大小为2&#xff08;这个网络一开始是基于VGG网络提出的&#xff0c;因为那时候提出比较早&#xff0c;没有…...

MyBatis-Plus中公共字段的统一处理

数据库中一些表的公共字段&#xff0c;例如修改时间、修改人、创建时间、创建人&#xff0c;我们一般都是这样来处理的&#xff1a; employee.setCreateTime(LocalDateTime.now()); employee.setUpdateTime(LocalDateTime.now()); employee.setCreateUser(UserHolder.get()); …...

SQL的导出与导入

1、导入 使用命令行导入 1.登录sql界面&#xff1b; 2.create database Demo新建一个库&#xff1b; 3.选中数据库use Demo&#xff1b;选中导入路径source D:Demo.sql; 4.查看表show tables; 2、导出 整个sql mysqldump -u username -ppassword dbname > dbname.sq…...

记录一次wordpress项目的发布过程

背景&#xff1a;发布一套已完成的代码到线上&#xff0c;有完整的代码包&#xff0c;sql文件&#xff0c;环境是linux 宝塔。无wordpress相关经验。 过程&#xff1a;正常的发布代码 问题1&#xff1a;访问自己的域名后跳转到别的域名。 解决&#xff1a; 修改数据表wp_optio…...

HTML详解连载(8)

HTML详解连载&#xff08;8&#xff09; 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽浮动-产品区域布局场景 解决方法清除浮动方法一&#xff1a;额外标签发方法二&#xff1a;单伪元素法方法三&#xff1a;双伪元素法方法四&#xff1a;overflow浮动-总结…...

Linux系统之安装OneNav个人书签管理器

Linux系统之安装OneNav个人书签管理器 一、OneNav介绍1.OneNav简介2.OneNav特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、检查本地环境3.1 检查本地操作系统版本3.2 检查系统内核版本3.3 检查本地yum仓库状态 四、安装httpd服务4.1 安装httpd4.2 启动httpd服务4…...

主程技术分享: 游戏项目帧同步,状态同步如何选

网络游戏开发项目中帧同步,状态同步如何选&#xff1f; 网络游戏的核心技术之一就是玩家的网络同步,主流的网络同步有”帧同步”与”状态同步”。今天我们来分析一下这两种同步模式。同时教大家如何在自己的项目中采用最合适的同步方式。接下来从以下3个方面来阐述: 对啦&…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解

在 C/C 编程的编译和链接过程中&#xff0c;附加包含目录、附加库目录和附加依赖项是三个至关重要的设置&#xff0c;它们相互配合&#xff0c;确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中&#xff0c;这些概念容易让人混淆&#xff0c;但深入理解它们的作用和联…...

go 里面的指针

指针 在 Go 中&#xff0c;指针&#xff08;pointer&#xff09;是一个变量的内存地址&#xff0c;就像 C 语言那样&#xff1a; a : 10 p : &a // p 是一个指向 a 的指针 fmt.Println(*p) // 输出 10&#xff0c;通过指针解引用• &a 表示获取变量 a 的地址 p 表示…...

MySQL的pymysql操作

本章是MySQL的最后一章&#xff0c;MySQL到此完结&#xff0c;下一站Hadoop&#xff01;&#xff01;&#xff01; 这章很简单&#xff0c;完整代码在最后&#xff0c;详细讲解之前python课程里面也有&#xff0c;感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

6个月Python学习计划 Day 16 - 面向对象编程(OOP)基础

第三周 Day 3 &#x1f3af; 今日目标 理解类&#xff08;class&#xff09;和对象&#xff08;object&#xff09;的关系学会定义类的属性、方法和构造函数&#xff08;init&#xff09;掌握对象的创建与使用初识封装、继承和多态的基本概念&#xff08;预告&#xff09; &a…...